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1. SUMMARY

In the original proposal of March, 1985 (85-NA-177) and in the letter of
December 16, 1985, we had chronologized the direction and focus of an
investigation on the instability, routes to chaos and transition to turbulence of an
axisymmetric jet flow. As described in the proposal, the choice of performing this
investigation in a jet were based on a number of factors including (a) the low
disturbance quality of the Jet Facility at IIT, (b) the large amount of data
accumulated over the recent years in past AFOSR funded research on instability
and transition in jets, (c) the fact that the jet can represent the more general class of
open flow systems in which evidence of strange attractor dynamics has not been
documented, and (d) a fact which was not pointed out in the original proposal but
which now has come to be appreciated, which is that the initial region of the jet can
act either as a convectively unstable system, or as a result of feedback resonance, act
as a globally unstable system. The implications of the latter fact will be discussed in
greater length in a later part in this report.

In those two documents we had detailed three general tasks (A-C) which
were intended to be performed in sequential order and which were each to
encompass approximately one year of time. Within each general task were a
number of subtasks wjhich involved both experimental and theoretical analysis.
These were designed to interact, enhance and build in a cumulative effort to reach
the general goals of the study.

The first general task (A) involved the basic search for evidence of low-
dimensional strange atliractors in a naturally (stochastic) excited axisymmetric jet.
The theoretical analog was the construction of low-dimensional model equations for
this flow which might show period doubling and behavior commensurate with
dynamical systems known to have strange attractors. Also part of the effort, was the
use of numerical, theoretical and experimental 'exercises' with data series from
systems with attractors of known dimensions and characteristics. These exercises
were intended to provide a level of confidence for making predictions about the
dynamical state of the measured systems as well as provide bench-marks for
comparison to other past and ongoing similar investigations in fluid dynamics and to
the more prolific number of investigations in the areas of physics and applied
mathematics. This was to involve the development of the computational tools for
determining such characteristic quantities as the attractor dimension, Lyapunov
exponents and phase space distributions.

The second general task (B) involved the 3-D (non-axisymmetric) periodic
and random forcing of the jet. This was intended to produce two types of results.
The Frst was meant to consider the basic instability processes which lead to the
growth of 3-D modes in jets The second would aitcmpt to trace the dcvclopm,n of
quasi-periodic states which might lead to random behavior.
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Experimentally this was to involve the use of azimuthally placed disturbance
generators capable of producing different axisymmetric and helical mode
combinations. A similar approach using heating segments to produce spanwise
periodic modes in boundary layers has been a great success in our laboratory. As
evidenced by the boundary layer experiments, the detailed documentation of even a
small number of possible combinations of controlled states was expected to take
considerable time, although, we fully expected it would provide valuable new
information about the initial instability and resonance conditions of such growing 2-
D and 3-D mode interactions.

The theoretical analysis within task B was intended to predict the conditions
for these highly controlled states. The major thrust would deal with the non-linear
evolution of disturbances leading to the growth of 3-D modes. This would involve
resonance mechanisms and strongly non-linear couplings leading to transition to
turbulence. We expected that at this stage of the work there would be frequent
comparisons between experiment and analysis in order to pinpoint similarities and
differences.

The third task (C) was designed to integrate the initial work and apply it
towards the active control of jets. In particular it was intended to build on the
experimental and theoretical results to pinpoint important mode interactions which
may have been found to lead to strong non-linear regimes and/or to random or
chaotic states. Such information would then be used in a detection, feedback and
control arrangement.

In the three year period of the grant, our investigations have nearly followed
the chronological order laid out in the original proposal. We have addressed most
of the experimental and theoretical tasks cited in A and B, as well as some tasks
which were not explicitly stated in the original pi-oposal. We have addressed task C
through the concept of intrinsic mode forcing through enhanced feedback.

1.1 Task A

During this period, extensive amounts of computer software were developed
for performing chaos related data analysis of time series. Some of the results of this
work were presented at the 39th Annual Meeting of the American Physical Society
Division of Fluid Dynamics. 1  An appendix on this topic taken from the Ph.D.
Thesis of Patrick Reisenthei 2 is included in pages 366 to 379 of this final report.
These exercises demonstrated that it was possible to obtain estimates of the
dimension of low-dimensional attractors, with known uncertainty, at reasonable
computational cost, and established a number of practical limitations which besets
higher dimensional estimates. In those exercises, an approximation of the
Grassberger-Procaccia dimension of known chaotic and pseudo-periodic signals was
calculated. The tests were designed to simulate data series obtained from a single
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sensor probe, for example, what might be obtained from a single sensor hot-wire in
the initial shear layer region of an axisymmetric jet. The test cases included the
Henon and Lorenz attractors, and sine waves with different numbers of
incommensurate frequencies. Other parameters that were varied were .the relative
sampling rate and the number of contiguous sample points. These exercises pointed
out the large uncertainties in determining the dimension of systems with more than
five degrees of freedom, and in our minds placed strong questions on results which
claim to have done so.

Methods fcr displaying phase space representations of data series with
different attractor dimensions were also developed. In particular a highly efficient
algorithm based on the singular decomposition method introduced by Broomhead
and King3 was used to produce optimum projections in phase space of low and
moderate dimension systems. The method is extremely powerful for discerning
deterministic behavior which might be masked by non-deterministic (incoherent)
processes. As a further means for separating out deterministic behavior, methods
using first-return mapping were developed and used in various numerical exercises.

In this phase of the work, measurements were made in the initial shear layer
region of the axisymmetric jet under conditions of different Reynolds numbers, with
natural forcing as well as with mild forcing of axisymmetric modes using sound. The
Reynolds numbers were chosen based on the experience gained in previous studies
in this jet (Drubka4; Shakib5 ; Corke et al. 6) to produce conditions with minimum
feedback and strong resonant (enhanced) feedback. Measurements were taken at a
fixed azimuthal position but with different selected downstream positions where the
unstable modes were primarily initial fundamental axisymmetric, primarily initial
fundamental helical, a mixture of initial axisymmetric fundamental and
subharmonic, and mixture of initial axisymmetric fundamental, subharmonic and
fundamental helical modes. In terms of attractor dimensions these respective
locations should have produced systems with attractor dimensions of one in the first
two cases, one with a subharmonic, and two with a subharmonic. With the addition
of far-field acoustic forcing, we could suppress the helical modes and in those cases
reduce the dimension by one. Such forcing at the natural axisymmetric mode
frequency could also, to some extent, weaken or otherwise alter the feedback and
thereby modify the development of the axisymmetric subharmonic mode. Away
from the preferred frequency, forcing could produce strong non-linear coupling with
sum and difference interactions and a non-exact subharmonic mode. Therefore
these cases represented different degrees of complexity and order of attractors
under conditions which were well documented and repeatably set.

Under the conditions with natural and enhanced feedback, long highly
sampled time-series at the fixed probe locations were acquired and processed using
the mathematical tools for analyzing the dynamical systems developed and tested
earlier. The results of this experiment constituted Chapter V of Reisenthel's thesis. 2

Independent measures of attractor dimension were obtained, using the modified
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Grassberger-Procaccia 7 algorithm and the singular decomposition method by

Broomhead and King.- These measures confirmed the low-dimensional nature of
the dynamics of shear-layer instability, up to pairing location. The dimension was
shown to increase with downstream distance. Mild axisymmetric forcing consistently

reduced dimensionality by approximately one. Phase-space representations and
Poincare sections were examined in an attempt to evidence more clearly any
departure of the data from quasi-periodicity. These underlined the added
complexity introduced by the presence of non-axisymmetric modes, and revealed no
discernible fine or fractal structure. First return maps calculated from the Poincare
sections reinforced these observations. Finally, direct measurements of the largest
Lyapunov exponent (K) were performed using two of the available methods, due

respectively to Wolf et al. 8, and Sano and Sawada 9. Though different in scope these
methods gave convergent large positive values of K, but are not trusted as being
sufficiently quantitative, owing to their critical sensitivity to various input
parameters.

One of the conclusions drawn from these measurements of Task A was the
crucial role of "clean" experimental conditions such as core turbulence intensity
(approximately 0.05%) and the need for strongly resonant axisymmetric instabilities
in order to distinguish deterministic non-linear dynamics from noisy quasi-
periodicity in the jet. Such conditions may be achieved by examining jet behavior at
Reynolds numbers corresponding to the "column instability mode", namely, when
the initial axisymmetric wave length is such that an integer number of pairing events
coincides with the end of the potential core, and/or alternatively by the use of
controlled external forcing. The existence of the column instability mode has been
known for some time, however in other higher disturbance jet facilities it is only
observable with strong axisymmetric forcing. In our case, with the low disturbance

levels, we have Reynolds numbers at which the column instability mode exists
naturally (Drubka's Re=42,000). Therefore one approach to reduce the noisy
quasi-periodicity in the jet, that is, the random phase modulations of the periodic
initial instabilities would involve operating at Reynolds number conditions where
such a natural coupling existed.

There were more profound reasons for setting our operating conditions to be

at a strongly resonant state for studying the routes to chaotic behavior in an open
fluid flow. During the period of the grant, there appeared a numerical study by

Deissler 10 on convective chaos in an open flow system that pointed to the role of
non-determinant disturbance imperfections from purely harmonic inputs in the
route to chaotic behavior. He stressed the inadequacy of presently available tools in
order to study deterministic oscillations in a "true" open system. Such an analysis
does not however include considerations of feedback. Therefore, a series of
measurements were undertaken that elucidated the role of feedback in an open flow
system (Task C), since feedback or forcing can play the role of effective "boundary
conditions" with respect to wave dynamics. Early observations of probe feedback
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and harmonic spectra indicated that a convectively unstable flow, such as a cold
axisymmetric jet, in the presence of feedback, shared some of the features related to
absolute instability (closed flows). Such a distinction has profound implications with
respect to the possible existence of deterministic chaos in jets, as well as issues of
"flow controllability".

The theoretical analog to the experimental work of Task A was a nonlinear
stability analysis of a viscous axisymmetric jet to axisymmetric and helical
disturbances. These were analyzed with a severely truncated form of a Fourier-
eigenfunction model expansion to lead to a low-dimensional system of amplitude
equations of the Lorenz-type. The formulation and analysis of these formed the
basis of the Ph.D. thesis of Judith Horwitz." The abstract and summary of her
thesis are contained in pages 348 to 356 of this report.

For the case of axisymmetric disturbances, the 3-D analog of the Lorenz
equations which included the fundamental mode and mean flow distortion was
obtained. Unlike the Lorenz system, which has chaotic solutions when the Prandtl
number is high enough, there are no chaotic solutions for this model of the jet. For
R>Rc only globally stable periodic solutions existed. This result was independent of
the shape function used.

Adding in the harmonic to produce a 5-D system caused the periodic solution
to lose stability to a quasi-periodic solution with two incommensurate frequencies.
For one choice of shape functions, the quasi-periodic branch eventually goes
through a periodic regime and then becomes intermittent. A different choice of
shape functions lead to a homoclinic orbit and unbounded solutions following the
quasi-periodic regime. The bifurcation diagram for the axisymmetric case are
shown on page 355 of this report.

The case for nonaxisymmetric disturbances lead to a similar sequence of
*0 bifurcations. The bifurcation diagram for this case is shown on page 356. In both

cases, the feature that distinguishes these low order models, representing an open
flow system, from the closed flow system Lorenz model, is that the secondary
bifurcation leads to a two-frequency quasi-periodicity rather than to chaos. Thus,
the main conclusion is that the low order truncation model for the jet does not lead

0 to chaotic solutions and as such does not give an identifiable path to turbulence.
This work however represents the first attempt to proceed beyond the linear
stability analysis for the axisymmetric jet, and the first to include three-dimensional
disturbances to derive a low order system of amplitude equations.

1.2 Task B

In addition to the far-field acoustic forcing, we had also developed a method
to produce azimuthally varying 3-D modes in the jet. This constituted the
experimental portion of Task B. This involved placing an azimuthal array of 12
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miniature speakers on the face of the jet, in the proximity of the exit lip. The
speakers were individually controllable in amplitude and phase to allow different
azimuthal wave numbers of helical modes. Measurements of the mean flow
character of the exit shear layer, and the Strouhal number dependence on Reynolds
number of the dominant natural instability modes showed that the speaker array did
not introduce any passive modification of the jet conditions. Forcing from a single
speaker and 1800 phase shifted speaker pairs were used to confirm quasi-two-
dimensional linear theory predictions, regarding relative insensitivity of
amplification rates to azimuthal wave number. This was further confirmed for all
active speakers forcing helical modes of different azimuthal wave numbers. From
these results, we have the capability to excite helical modes up to ±6, the limit of 12
speakers.

Documentation of this set-up and early measurements is contained in the two
papers by Kusek et al. 12,13 In that work, we take a different approach than others in
that we directly seed helical wave pairs of both positive and negative azimuthal wave
numbers. The reasons for this approach are that linear theory does not distinguish
between these, and a helical mode of one sign, interacting with an axisymmetric
mode, will otherwise produce the opposite signed helical mode. The latter is
important in terms of our applications which deal with helical/axisymmetric mode
resonance interactions. We therefore need not wait for the growth to sufficiently
large amplitudes before the complete outcome of the mode interactions, we
ultimately seek, occurs.

The setup has been used in both active and reactive (enhanced feedback)
situations to control simultaneously axisymmetric and pairs of helical modes. Under
active control, periodic time series to the speaker array are supplied by a function
generator or digital computer. Under reactive control, the forcing input is derived
from the analog time series proportional to the velocity fluctuations taken at a point
in space in the developing shear layer downstream of the jet exit. Analog circuitry
was designed and built to accept these input signals and provide independent
control of each speaker output to allow different azimuthal amplitude and phase
distributions needed to seed different azimuthal wave number modes, 0_5m<6.

The ability to seed m = ± 1 helical modes has been confirmed over a range of
jet diameter Reynolds numbers from 4,000 through 60,000. At the lower Reynolds
numbers, where flow visualization is more easily performed, we were able to
visually record the characteristic features of these modes (see for example Figures
15 and 16 of reference 12, reproduced on page 242 of this report). These revealed
in the nonlinear stages, staggered vortices at the azimuthal positions of amplitude
maxima (helical mode pair crossing intersections), and formed 'Y' pattern
connections to these. The junction of the 'Y' pattern forms at the location of the
azimuthal amplitude minima. This pattern is invariant in the flow direction.
Multiple photograph realizations confirmed that these modes were phasc locked
with the forcing time series.
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With helical modes, we have shown that intrinsic forcing of the jet through
enhanced feedback provides similar dynamics as for the axisvmmetric (m =0) modes
documented by Reisenthel 2 (Case C). In this case a highly asymmetric jet spreading
was exhibited (see Figure 18 of reference 12, reproduced on page 243), with the
greater spreading occurring at the locations cf the azimuthal amplitude maxima.
This alone, or in combination with m=0 modes offers rich possibilities for
practically exploiting such controlled resonant growth of these modes. The present
setup offers an ideal flexible test bed for examining these approaches.

A recent thesis by Kusekl 5 has performed a systematic quantitative measure
of the characteristics of the jet for three forcing conditions. The first consisting of a
weakly amplified helical mode pair which was essentially superposed onto the
natural jet instability modes. This provided a reference to the second case which
consisted of the same helical mode pairs along with an axisymmetric mode at the
harmonic streamwise wave number. This was designed to lead to the resonant
growth of the otherwise weakly amplifiect subharmonic helical mode. The third case
consisted of forcing m=-t1 helical m 'des at a streamwise wave number which was
close to that of the natural helical mode. The exact streamwise wave number was
carefully selected to nonlinearly couple with the jet column instability mode. This
occurred through a mode at the frequency of the difference between the forced and
natural axisymmetric modes, which equaled the harmonic of tlh, column mode
frequency. The result of this lead to numerous discrete sum and difference
interacted modes which quickly filled the spectrum.

The data of this study consist of the spatial distribution of energy in the
forced and natural modes, as well as linear and quadratic phatse coupling between
velocity fluctuations in the shear layer and pressure fluctuations at the exit lip of the
jet which arise from pressure feedback. For the case of subharmonic resonance, an
initial linear growth was verified, which was followed by a sharp change to an
enhanced secondary growth. The secondary growth was comparable to that of the
higher linear amplification rate of the forced axisymmetric mode. This, combined
with a matching of phase speeds of these two modes, confirmed resonance.

Resonance also resulted in an asymmetric growth in momentum thickness,
with the largest growth occurring at the azimuthal locations of the helical mode
energy maxima. The total (azimuthally summed) growth in this case was 300
percent larger than in the natural jet. Coupling with the column mode produced a
50 percent increase over the natural jet.

The theoretical underpinnings to Task B were provided by the Ph.D. thesis
by Azam Ahmadi-Moghadam.14 The abstract and conclusions have been included in
pages 357 to 365 of this report. This considered the temporal and spatial instability
of a Blasius shear layer to helical modes of different azimuthal wave number. In
particular, the effect of shear layer curvature on amplification rates and phase
velocities was examined as a prerequisite to the main focus of resonance
mechanisms. A nonaxisymmetric secondary instability for the shear layer through a
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Kelly-type parametric resonance was analyzed. This showed the most important
case, that is, the one with the strongest contribution to the total growth rate, was the
one involving an axisymmetric fundamental disturbance, and two subharmonic
modes with opposite but equal azimuthal wave numbers. In this case, the secondary
growth rate increased with both increasing azimuthal wave number and curvaturo
effects.

A Craik-like triad interaction involving an axisymmetric fundamental and
two subharmonic waves with opposite azimuthal wave numbers was also analyzed.
This showed that once the subharmonic disturbance reached a sufficient amplitude
so that back-interaction to the fundamental becomes important, an explosive growth
would occur. This phenomenn was found to be relatively insensitive to initial

conditions, although the rapid growth was found to occur earlier for larger
azimuthal wave numbers and curvature effects. The M.S. thesis of Kusek' 5, has
verified some of these predictions for m= 1 helical modes.

1.3 Task C

The direction of thinking based on the observations from Task A, led to the
concept of intrinsic jet forcing which we had termed as enhanced feedback. In terms
of the original task, this approach constituted Task C, in that it involved interactive
forcing, feedback and control. The results of this formed the basis of a large part of
the Ph.D. thesis of Reisenthel. 2 The abstract, and conclusions from his thesis are
included in pages 339-347. A recent paper 16 accepted for publication in the Journlal
of Fluid Mechanics, which is based on this thesis work, is included in pages 1 to 111.
Another publication, partly based on documentation of the mean characteristics of
the jet from Reisenthel's thesis, and previously unpublished results from Drubka 4,
has appeared in Physics of Fluids A17. A copy ot that has been included in pages
219-231.

The approach in this task involved using the amplified signal from a hot-wire,
placed in the shear layer of the jet, to drive a far-field sound source. Under these

0 conditions, the otherwise wholly convectively unstable system was shown to be
governed by a global temporal instability. This was observed through exponential
amplification or decay of self-sustained oscillations of an eigenmode of the system,
produced by closing or opening the feedback loop. The selection of the
eigenfrequency was based on the combination of being the most amplified shear
layer mode from linear theory, as well as satisfying a feedback criterion requiring an
integer number,of wavelengths between the jet lip and feedback sensor. The self-
excited, highly organized axisymmetric (far-field source) modes were found to share
many of the qualitative features such as frequency jumps, and hysteresis, exhibited
by the broad class of hydroacoustic problems. The results documented the origin of
a critical Reynolds number. At criticality, experimental evidence supports the result
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that the flow undergoes a supercritical Hopf bifurcation. The connections with the

Landau equation were established.
Because of the controlled feedback conditions of the experiment, threshold

effects based on velocity and streamwise flow scale were able to be related to a

critical gain. A dual empirical and analytical approach, motivated by observations

from this flowfield and based on the concept of a "hybrid" instability, was used to

explain the origin of frequency selectivity. The role of this instability was analyzed

with phenomenological equations utilizing the results of linear theory to describe in

detail the dynamics of feedback, and many of its no.ilinear consequences. A

primary result was that close to criticality, open flow systems with feedback may

support global instabilities which grow in time. Analytical considerations suggest

that an increasing number of potentially excited modes may be involved as the

Reynolds number is further increased.

A key element in systems such as this, where pressure feedback plays a

dominant role in the selection of unstable eigenmodes, is the receptivity of tile

initial shear layer to pressure disturbances. More specifically, the amplitude and

phase frequency response are an integral element in the choice of eigenfrequencies

of the total system. The important role of feedback in an natural (stochastically
forced) jet for the resonant growth of the subharmonic axisymmetric mode has been

documented by Corke et al. 18 A copy of this paper, completed during the period of
this grant, which is to appear in the Journal of Fluid Mechanics, is included in this

final report on pages 112 through 218. Our understanding of the role of feedback

gained in this work was tile origin in thinking of the enhanced feedback which we

exploited under Task C. In all of this, the receptivity process remained an unknown

element within this process.

We had looked at the amplitude and phase response at receptivity in a
separate experiment. The results of this were reported in the Bulletin of the

American Physical Society. 19 This has been included in the final report on page 336.

This involved forcing the shear layer of the jet using a far field sound source and

monitoring the and phase response of the unsteady pressure at the exit lip of the jet,

and in velocity fluctuations at different downstream positions in the shear layer. At

a given Strouhal number, the linear spatial amplification rate and phase

development was measured. These were then used to extrapolate back to the point

of receptivity at the lip of the jet. A range of jet diameter Reynolds numbers from

40,000 to 80,000 were examined. For these, a range of Strouhal numbers which
bracketed the range of most amplified values were used to construct tile receptivity

transfer function. As a byproduct of this exercise, we also were able to make

comparisons to linear theory for the mode amplification rate and phase velocity.

The results showed an approximate 27r phase variation with Strouhal number

at receptivity for frequency values close to that of the natural axisymmetric modes.

A very gradual increase in the amplitude transfer function with increasing Strouhal

number was found above the most amplified value. Below the most amplified
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Strouhal number, an almost constant amplitude transfer function, u'/p', of

approximately 2.5 was measured at receptivity.
A secondary issue to the experiment, was the level reached by the forced

mode at saturation, and its dependence on Reynolds number and Strouhal number.

The outcome of this was a surprising result that the saturation amplitude was not a
constant, but appeared to scale with Strouhal number, based on the initial

momentum thickness. The highest saturation amplitudes occurred at the Strouhal
numbers of the natural axisymmetric modes.

Currently, there is no theory to guide us. Receptivity analysis, in the manner

of triple deck approaches, is done on a linear basis. This problem is, clearly
nonlinear in nature, and cannot be modeled by current approaches. Yet, the

receptivity transfer is a fundamental aspect to resonant feedback systems and
deserves further attention. Our setup provides an approach to explain some of our
observations, and we expect to pursue this in our future research. The results to
date are to be submitted as a Technical Note in Physics of Fluids A.

Within Task C, the follow-up work to Patrick Reisenthel's Ph.D. thesis was
an experiment to measure the values of the Landau coefficients at different spatial
locations in the shear layer for the jet with enhanced feedback. This involved using
two hot-wire sensors, one at a fixed spatial location to provide the feedback signal
similar to Reisenthel's, and the other, which was moved to different spatial
locations, to sample the temporally growing eigenmode produced with a closed
feedback loop. The issue here is if the coefficients of the simple Landau amplitude
equation model are invariant in space. Phase averaged measurements were
obtained by repeated opening and closing of the feedback loop under computer
control. At any streamwise position within the shear layer, the temporal growth of a
single eigenfrequency was fit to the complex form of the Landau equation. The
result of this indicated that although both the real and imaginary parts of the
equation appear to be largely independent of space when the flow is almost parallel
(approximately 1.5 wavelengths downstream), the Landau coefficient decreases by
several orders of magnitude within a fraction of the eigenfrequency wavelength.

The implications are that this simple mode is not sufficient to predict the behavior of
0 the eigenmode at different points in space.

The results summarized here are contained in the internal report 20 (in
French) by Nathalie Nivelet, a French exchange student, and Patrick Reisenthel.
This has been reproduced, with an abstract in English, in pages 270 through 332. A
paper to be submitted to Physics of Fluids A is in progress.

* In this experiment when we review the time-series or spectra, we observe the
presence of a subharmonic mode. We have documented in our previous work that
the fundamental and subharmonic modes are quadratically phase locked, which

results in a matching of phase velocities and ultimate energy transfer between them.
This is reflected in the enhanced growth of the subharmonic beyond what is

* predicted from linear theory. The presence of the eigenfrequency subharmonic
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suggests that at minimum a pair of coupled amplitude equations are necessary to
model this system. That is, it accounts for the effect of the amplitude of the
fundamental eigenmode on the subharmonic, and the subharmonic on the
funda-mental. The change in the Landau coefficient for the amplitude equation
which reflects only the fundamental mode is not the complete picture. As a result,
we are currently repeating this experiment to obtain the coefficients of the coupled
amplitude model, and from this to determine any spatial dependence on their
values.

1.4 Ice Storage Chill Water System for NDF

Work on the 1100 ton-hour ice storage chill water system began March, 1989,
with an expected completion date of September, 1989. As a result of numerous
delays in the delivery of hardware and in fabrication of the delivery piping system,
the ultimate completion date was June, 1990. At that time the system was
thoroughly checked and optimized for operation with the cooling-vanes of turns 1
and 3 of NDF. Air temperature surveys downstream of turn 1 showed outstanding
spatial uniformity of mean temperatures, with deviations from the mean of less than
0.4 percent. The overall performance of the cooling vanes was in line, or slightly
better with the computer model and small scale experiment predictions used to
design the full scale turn. Overall we are very pleased with the cooling operation.
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Global instability in an axisymmetric jet with enhanced feedback

By P. REISENTHEL, H. M. NAGIB & T. C. CORKE

Fluid Dynamics Research Center, Illinois Institute of Technology, Chicago, IL 60616, USA

The present experiment considers an axisymmetric jet as a prototypical open flow

system, the organization of which has been enhanced by a feedback loop of controllable

strength. When the source of feedback is located in the initial shear layer, strong self-

sustained oscillations were spontaneously produced past critical conditions. Because of

the controlled conditions of the experiment, thresholding effects based on velocity and

streamwise flow scale were related to the existence of a critical gain. A dual empirical

and analytical approach, motivated by observations from this flowfield and based on the

concept of "hybrid" instability, was used to explain the origin of frequency selectivity

and the existence of a critical Reynolds number in feedback systems. The primary result

of this study is the demonstration that, close to criticality, open flows with feedback may

support global instabilities which grow in time. The instability is hybrid, in the sense

that it is temporal with respect to the amplitude of global oscillations, but convective

with respect to local shear layer dynamics. The role of this instability was analyzed with

phenomenological equations utilizing the results of linear theory to describe in detail the

dynamics of feedback, and many of its non-linear consequences. Finally, it was

experimentally demonstrated that, for Reynolds numbers slightly larger than critical,

well-defined limit-cycle behavior is observed. Analytical considerations suggest that an

increasing number of potentially excited modes may be involved as the Reynolds number

is further increased.
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1. Introduction

1.1. Jet flows: streamwise evolution

A prototypical open flow system is provided by the axisymmetric jet. Though much

knowledge has been gained over the years, in the present investigation we examine this

flowfield in light of new methods of excitation motivated by the study of dynamical

systems. The large body of work related to jets has been instigated by a number of

interests which may be divided into two main categories. The first one is related to the

engineering importance of jets: many investigations have been driven by the challenging

prospects of controlling turbulent jets. "Control" generally refers to the alteration of

global quantities of practical interest, such as spreading rates, mixing, or the production

of acoustic noise. Another motivating force, however, is the basic understanding of

turbulence generated in free shear flows. The strong, localized receptivity at the lip, the

powerful broadband amplification in the shear layer, and pressure feedback associated

with the main restructuring events in the shear layer constitute the three principle

elements of such flowfields. The early stages of shear layer amplification are quite well

predicted by linear stability theory. The mean profile of a jet is inviscidly unstable to

small disturbances, which grow exponentially over short distances from the lip. Weakly

non-linear aspects have also been analyzed from small perturbations around the neutral

point. In particular, the increased growth of a subharmonic frequency leading to pairing

has been successfully accounted for by the subharmonic resonance mechanism. Drubka

(1981) showed that a subharmonic resonance takes place in the jet at approximately two

fundamental wavelengths from the lip. 0

In addition to their large spatial amplification rates, jet flows are characterized by

an unusual sensitivity to low-amplitude acoustic forcing. The phenomenon by which

irrotational pressure disturbances are efficiently converted to embryonic vortical 0

fluctuations at the lip is termed "receptivity". Morkovin and Paranjape (1971) examined



the sensitivity of shear layers to acoustic excitation and showed the existence of an

"acoustic coupling" proportional to the gradient of the diffracted pressure field at

separation.

The downstream evolution and reorganization of flow structures in the jet has

been the focus of much analysis. It is somewhat surprising, however, that relatively few

attempts have been made to consider the flowfield globally, by incorporating the weak

pressure feedback to the lip. Yet, there is clear experimental evidence of the acoustic

feedback. Corke et al. (1985) used bicoherence measurements to verify the feedback of

energy at the lip, from the sites of first vortex roll up, and pairing respectively. Gutmark

and Ho (1983) mention a significant amount of "self-forcing" in jets, due to downstream

sources of pressure fluctuation. According to Ho and Huerre (1984), the fluctuating

pressure felt at the lip is most likely due to the first two pairing events, which are the

most spatially coherent ones. There is also strong experimental evidence of feedback due

to the preferred mode. Kibens's (1980) resonant jet clearly exhibited a form of

synchronization between initial shear layer and "largest scale information" fed back to

the lip. In this way, the "phase randomization" (loss of phase reference) which accounts

for spatial jitter in most jets was effectively reduced, due to a phase lock at the point of

receptivity.

Under general non-resonant conditions, however, the location of pairing events is

not fixed. Monkewitz (1983) examined the weak feedback mechanism associated with

pairing interactions and the jet column instability mode. Low-frequency amplitude

modulations of the initial shear layer instability were unequivocally shown to correspond

to the passage frequency at the end of the potential core, which effectively "organizes"

the development of the jet, through receptivity. Even weakly felt at the lip, the low-

frequency forcing due to the jet column mode may be essential, since low-frequency

modulations have been shown to play a dominant role in the transition process (Miksad

0i



et al., 1982), although the question here is whether the low frequencies can be a bi-

product of the detuning in a parametric interaction.

As pointed out by Ho and Huerre (1984), the global understanding of jet

dynamics requires the coupling between the initial conditions in the shear layer and the

downstream "dominant flow events" which may feed back to the lip through pressure

disturbances. Herbert and Morkovin (1980) also stressed the global dependence of the

flow on the receptivity and the matching of the shear-layer frequencies with that of the

weakly preferred mode.

Although feedback loop considerations bestow upon jet flows an underlying

degree of intrinsic order, these flows exhibit a remarkable sensitivity to environmental

forcing. Gutmark and Ho (1983), for example, compiled data from six jet facilities and

found that small facility-dependent spatially coherent perturbations caused large

variations in initial Strouhal number, frequency of the preferred mode, and spreading

rates (as much as 100%). In contrast to the sharp sensitivity of the shear-layer to initial

conditions at the lip, the jet-column mode has been found to be remarkably independent

of initial conditions. Hussain and Zaman (1981), in particular, showed that the Strouhal

number scaling of the preferred mode was independent of whether exit conditions were

laminar or turbulent. They mentioned that the gradual independence from initial

conditions is achieved via successive restructurings of the shear layer, evolving to a

"terminal structure" at the end of the potential core.

Of importance (among the dominant modes of the jet) is the helical instability

mode, which is approximately equally amplified as the fundamental axisymmetric mode. 0

Drubka (1981) showed experimentally the existence of a helical mode having a Strouhal

number 23% higher than that of the fundamental axisymmetric mode. Shakib (1984)

used the maximum entropy method to document the switching between helical and •

axisymmetric modes, and concluded that the existence of one effectively suppressed the



presence of the other. A satisfactory explanation of the origin of the switching between

these modes has not yet been put forth. It is believed that considerations of the

continuing non-linear competition between these dominant modes (including

subharmonic and jet-preferred modes), coupled with feedback to the lip, may provide

significant insight into the deterministic non-linear dynamics of the jet.

1.2. Free shear flows with feedback

In contrast to the weak feedback that naturally occurs in jets (with the exception of the

jet-column mode), strong feedback loops can organize free shear flows in spectacular

ways. The interest in studying flows which exhibit such resonances stems in part from

the fact that their "non-resonant" counter-part (i.e. in the absence of strong phase-

locking) may be regarded in most respects as containing the underlying degree of

organization which appears when enhanced by feedback. In addition to purely

hydrodynamic resonances initiated by "pockets of absolute instability" (Chomaz et al.,

1987), self-sustained oscillations are most commonly observed in free shear flows

impinging on boundaries.

In their review, Rockwell and Naudascher (1979) stress the four key ingredients

that constitute these flows. These are: "inducement" of local vorticity fluctuations at

separation, amplification in the shear layer, production of disturbances at impingement,

and feedback. The feedback process can be either hydrodynamic (Biot-Savart induction)

or acoustic (e.g. vortex straining may act as a pressure source). In air, it is the latter of

the two which is predominant. According to Rockwell and Naudascher (1979), the

impingement of vortical structures on the downstream body is probably the least

understood of the four, although considerable progress has been made in this area, as

exemplified by the detailed knowledge of vortex-edge interactions obtained in recent

years (see for example Kaykayoglu and Rockwell, 1985). Also, depending on the
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geometry, the presence of solid boundaries downstream of separation may either generate

the disturbances, or inhibit their upstream influence, thereby breaking the feedback loop.

In jets, even though pressure waves may propagate through the core, most of the energy

has been shown to be fed back through the ambient fluid.

It is important to classify impinging shear layers in the context of absolute and

convective instability. It should first be clarified that these linear concepts refer to local

vortical fluctuations, which are not to be confused with the overall degree of organization

which may be present in resonant or feedback systems. For instance, in Ho and Nossier's

(1981) impinging jet experiment, the location of pairings is fixed and may be predicted

using an 'integer number of wave lengths around the loop' criterion. The coherent

oscillations of the flow are the result of a "global" instability. This phenomenon is

referred to by Huerre (1987) as a "hydroacoustic resonance", as opposed to the purely

hydrodynamic resonances that may occur without the presence of a downstream body in

some flows containing regions of absolute instability. There is also evidence that the

stability properties of the hydrodynamic part of even strong feedback loops remains

relatively unaltered by the global instability. Namely, shear-layer tones, flows over

cavities and other edge-tone like phenomena are convectively unstable flows. Hussain

and Zaman (1978), for instance, found remarkably close agreement between the normal

phase distributions and eigenfunction amplitudes associated with the shear layer tone

phenomenon, and spatial linear stability theory.

Unlike convectively unstable flows in the absence of feedback loops,

hydroacoustic resonances display a clear insensitivity to external disturbances, as far as

global oscillations are concerned (see e.g. Ho and Nossier, 1981). Although the

insensitivity to external perturbations is a property which is shared by absolutely unstable

flows, it should be stressed that the flows under consideration remain locally convectively

unstable, as one should expect if the local mean velocity profile is not significantly
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affected by the presence of a feedback loop.

The great majority of flows capable of self-sustained oscillations have been

shown to share qualitatively similar characteristics. It is believed therefore that they are

controlled by a common basic mechanism. Among these shared properties, one of the

most striking features is the existence of "frequency stages". The observed frequency of

oscillation jumps between stages, and these frequency jumps may or may not be

accompanied by hysteresis. In cases of weaker feedback, such as Hussain and Zaman's

(1978) shear layer tone experiment, intermittent switching is observed in the vicinity of

frequency jumps. However, in flows with a high degree of symmetry, such as in hole

tone experiments, there is evidence of strong hysteresis. Within a given frequency stage,

the number of cycles in the loop is presumably fixed so that phase information is

preserved. The frequency of oscillation increases within a given stage with increasing

Reynolds number and decreasing impingement distance from the point of separation.

Depending on the flowfield, various empirical formulae have been used to

determine the frequency stages. Although it is believed that these various flowfields

must satisfy the same fundamental feedback condition that there be an integer number of

periods (N) around the loop, it is not uncommon to observe (among others) criteria

involving (N + 1/4) (edge tones) or (N + 1/2) (shear layer tones). Unknown phase

changes at the impingement and receptivity stages of the loop might account for these

differences. Another common characteristic of hydroacoustic resonances is the existence

of a threshold in Reynolds number, in order for self-sustained oscillations to make their

appearance. In the case of impinging shear layers, the distance between impingement

and separation must also exceed a minimum value. Sarohia (1977) established the

existence of a minimum dimensionless length in the case of flow over an axisymmetric

cavity, and showed that this number was independent of cavity depth.

As mentioned by Rockwell and Naudascher (1979) and Herbert and Morkovin
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(1980), although several frequencies may simultaneously be found near the point of

separation, usually only one eventually dominates the flowfield. Indeed, the coexistence

of amplified modes of oscillations within the feedback loop appears to be rare, except if

several independent loops are present, or if the frequencies are harmonically related.

This last case was illustrated by Lucas and Rockwell (1984) for a planar jet impinging

upon a wedge, where all frequencies in the spectrum could be related to the interaction of

two modes of oscillation whose frequencies were multiple of each other. Knisely and

Rockwell (1982) focussed on the presence of a dual sub~h"rmonic in the oscillations of a

cavity shear layer. They showed that each of the observed modes corresponded to

eigenfrequencies of the feedback loop and that the low-frequency modulation was due to

the lowest eigenvalue (i.e. one cycle around the loop).

Krothapalli (1985) experimentally investigated a choked underexpanded jet

impinging on a flat plate and showed the coexistence of two feedback loops. The first

feedback loop corresponded to the classical "screech" tone, whereas the second,

"impinging" tone, was shown to correspond to large scale structures convecting at half

the jet velocity, in accordance with Ho and Nossie, (1981). Thus, both the shock wave

and the distance to the flat plate played equivalent roles as feedback flow scales. Umeda

et al. (1987) also conjectured a double feedback loop of similar nature in the case of

strong discrete tones generated from the interaction of a high speed jet with a circular

cylinder. They concluded to the existence of two characteristic length scales for the

feedback loop: the shock cell structure, and the nozzle to cylinder distance. An

interesting suggestion was also made concerning the practical use of multiple feedback

loops to produce wave cancellation, a result which appears to have been successfully

demonstrated by Nagel et al. (1983) in the case of supersonic jet screech.

Among the various theories aimed at the prediction of self-sustained oscillations,

Powell's (1961) theory of the edge tone is recognized as one of the most complete to

p | i~m • 0



date, despite the fact that it used a somewhat arbitrarily prescribed phase difference

between impingement and separation. Most theories revolve around such a postulate,

complemented by results of linear stability theory. Powell developed an elegant "unity

gain around the loop" criterion from which he derived most of the qualitatively observed

features of edge tone phenomena such as velocity and distance thresholds, frequency

jumps, and even hysteresis. Woolley and Karamcheti (1974) emphasized more strongly

the essential role of shear layer amplification, but claimed that the frequency decrease

that was observed with increasing streamwisc flow scale was the result of non-parallel

effects. Hussain and Zaman (1978) argued that it cannot be so, since the frequency of

oscillation does not scale with local momentum thickness. Another deficiency of

Woolley and Karamcheti's theory (which is based on the integrated amplitude by

application of non-parallel stability theory) is that it does not address the problem of

frequency jumps. Tam and Block (1978) developed a complex model based on a

rigorous analysis of cavity tones. In their model, the shear layer thickness comes into

consideration, along with the aspect ratio of the cavity. Their results illustrate the

possibility of a cavity mode resonance at low Mach number.

It is important to realize that the generality of self-sustained oscillations does not

apply solely to laminar flows like edge tones, and that coherent oscillations have been

obtained via strong feedback loops in fully turbulent flows (Sarohia, 1977). Also, Ho and

Nossier (1981) obtained spectacular phase-locking of large scale 'oherent structures in a

high-speed subsonic turbulent jet impinging on a flat plate. Intermittent switcning was

also observed close to frequency jumps between stages. According to Ho and Nossier,

the Strouhal number of the resonant modes was close, on the average, to the "most

unstable mode of a free jet column". They concluded that the entire organizing process

revolved around the multiple merging of coherent structures or "collective interaction",

(similar to Crow and Champagne's, 1971), and stressed the essential role of large scale
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structures in the feedback mechanism. As pointed out by Rockwell and Naudascher

(1979), the reduction of spatial jitter in spatially developing flows is closely tied to the

nature of the highly coherent feedback mechanism which is attainable in both laminar

and turbulent flows.

2. Experimental facilities and procedures

2.1. Experimental facility

The main facility used in this study was the I.I.T. air jet facility depicted in Figure 1.

This facility is essentially unchanged from the configuration used by both Drubka (1981)

and Shakib (1984), except for modifications upstream of the settling chamber. The

settling chamber is acoustically insulated with foam and contains a series of grids,

screens and honeycombs carefully designed to produce a uniform, low turbulence

intensity flow at the outlet. The actual details of the settling chamber are reported by

Ahmed et al. (1976). During the course of the present investigation, a single test-section

configuration was used, corresponding to Drubka's (1981) "1L" case. The test section is 0

made of a 38.1 cm long plexiglass circular cylinder (diameter 15.2 cm) followed

downstream by a fifth-order contraction of 9:1 area ratio, and produces a uniform jet with

thin laminar exit boundary layers (exit momentum thickness (9 less than 1/200 diameter).

The exit diameter is 5.1 cm, and the jet velocity ranged from 10 m/s to 30 m/s. Many of

the details of the experimental set up, along with the well documented spatial

characteristics of this flowfield, can be found in Nagib et al. (1989). For the purpose of •

the present manuscript, it suffices to stress that the overwhelming characteristic of this

facility is its low freestream turbulence intensity (less than 0.05%). Stepper motors

powered the traversing mechanism and provided a positioning accuracy of 10 urm in the

streamwise direction and 5 uLn in the radial direction (the hot-wire sensor was 3.8 grn in



11

diameter). The traversing mechanism was used to control the position of the miniature

hot-wire probe which was used and described by Drubka (1981). The use of the

miniature probe (prong diameter 7.6 jim) over other available probes was found to be

critical, particularly in terms of often unsuspected probe feedback effects (see Hussain

and Zaman, 1978 and Reisenthel, 1988). A second (stationary) hot-wire probe was

occasionally placed farther downstream and diametrically opposed to the miniature

probe, in order to document the spatial structure of the flow field. Both probes were

0 placed at a 450 angle from the flow in order to minimize probe body interference.

2.2. Enhanced feedback configuration

The so-called "enhanced feedback" configuration is depicted in Figure 2. This case of

artificial feedback was designed to provide a controlled means of reinjecting disturbances

originating at an arbitrary location in the jet, back to the point of shear layer separation.

The velocity signal measured by the miniature feedback sensor was amplified, using an

adjustable gain analog amplifier, and used as an input to the speaker placed 70 diameters,

D, away from the jet exit, therefore generating pressure fluctuations of magnitude

proportional to the input velocity fluctuation at the sensor location. The feedback loop is

closed by the upstream propagation of these pressure waves, and their coupling with

initial fluctuations at the point of receptivity. The strict linearity of the return leg in the

loop was documented by Reisenthel (1988). Finally, transient measurements were made

possible by the synchronization of A/D and D/A transfers controlling the closure (or the

opening) of the feedback loop at specific times during digital data acquisition. This

operation relied on fast electronic switches, which were externally controlled by the

analog output level of an MC-5500 series Masscomp computer.

0

0
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3. Non-linear effects of closed-loop excitation

3.1. Gain threshold

The majority of the work described in the present manuscript focuses on the harmonic

excitation of the jet by means of enhanced feedback. Although the nature of self-

sustained oscillations under these conditions is generally not harmonic (see Reisenthel,

1988), the jet is strongly organized when the feedback hot-wire sensor is positioned at

spatial locations for which the flow is both laminar and axisymmetric. In practice, these

conditions are reasonably well satisfied up to the first pairing location (approximately

four fundamental wave-lengths downstream of the lip), and on the high-speed side of the

shear-layer. Self-sustained oscillations with the purest spectral content were obtained by

positioning the feedback sensor along similarity lines of constant mean velocity U such

that typically: 0.6 < U/Ui < 0.9.

A typical power spectrum of the streamwise velocity is shown in Figure 3, where

the spectra of the natural and excited shear-layer are compared at Re = 68,000. This

organization of the initial shear layer is present both upstream and downstream of the

feedback sensor, as demonstrated in Figure 4. In all cases, no initial forcing was required

to start these self-sustained oscillations. In addition, the peaks in the power spectrum of

the excited jet (Figure 3) are seen to be apparently unrelated to the natural fundamental

axisymmetric mode (frequency f 0).

One of the most striking characteristics of these self-sustained oscillations is their

strong dependence on the total gain level of the feedback loop. The gain level G is

defined as the pressure fluctuation p' measured at the jet lip, per unit velocity fluctuation

u., at the location of the feedback sensor: G = p'/u (non-dimensional gain:

1r 2p' ). Qualitatively speaking, low gains have little or no effect on the shear-
P UXUJ

layer, whereas high values of the gain promote self-sustained oscillation. In the limit of

infinitely small gains, one intuitively expects to observe the natural jet behavior (open
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system), since no external pressure waves are added to the background sources of

excitation (turbulence intensity, environmental conditions, and natural jet feedback). As

the gain is slowly increased, low-level acoustic disturbances not unlike ."wind noise" start

to affect the shear-layer, but with no distinct spectral signature. As the gain is increased

further, regular tones make their intermittent appearance (see Reisenthel, 1988). These

tones are unsteady and continually switch in an apparently random way. Time-averaged

spectra show that the tones correspond to closely spaced frequencies of low amplitude

(frequently subaudible), that are simply superimposed on the background spectrum. A

very small increase in the gain fror, this point produces a distinct and dominant

frequency, the amplitude of which saturates rapidly, and remains relatively unchanged

with furth-er increase of the gain.

The above scenario is quite general and has been repeated at numerous Reynolds

numbers and sensor positions (denoted X). Figure 5 illustrates the variation of amplitude

with gain, at Re = 75,700 and X/D = 0.132. Under these conditions of Reynolds number

and probe position, the frequency of the self-sustained oscillation was 3320 Hz. The

amplitude of the fluctuation "jumps" by at least three orders of magnitude as F exceeds a

certain threshold. It should be stressed, however, that the data points presented here are

time averages of the spectral density, and that the smooth transition of the amplitude

across the threshold is nothing but the result of the long-time averaging process. In

reality, the oscillation has a marked intermittent character, close to the critical point.

Therefore, in the neighborhood of the threshold, the mean spectral density reflects the

proportion of time for which the amplitude saturates. Additionally, the vertical dashed

lines indicated in Figure 5 represent the boundaries of hysteretic behavior: as F is rapidly

decreased from a state of fully established, saturated self-sustained oscillation, the

fluctuation vanishes at a gain value close to F1. Conversely, the onset of oscillation is

delayed until F2 as the gain is rapidly increased. Incidentally, the range F1 < F < r 2
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coincides approximately with the intermittent region as the gain is varied across the

threshold in a quasi-steady fashion. For these reasons, the curve presented in Figure 5

illustrates the existence of a gain threshold, but does not suggest the actual abruptness

with which amplitude changes take place in an instantaneous sense.
0

Within the region where self-sustained oscillations are possible, there is a

sensitive dependence of the threshold location on downstream position of the feedback

probe. Figure 6 depicts the peak amplitude of the feedback frequency as a function of 0

gain for four values of X/D. At this Reynolds number (Re = 61,800), the oscillation

frequency F decreased from 2260 Hz to 2120 Hz with increasing X/D. For a given value

of the gain, the generation (or decay) of self-sustained oscillations depends critically on

sensor location. Figure 6 illustrates these large variations in threshold value.

Specifically, the X/D range considered in Figure 6 represents only 2.2 wave-lengths (k)

of the oscillation, but the corresponding variation in r threshold is approximately 500.

3.2. Frequency selectivity

The "intrinsic" response of the shear-layer (under given feedback excitation conditions)

represents a substantial departure from the convective instability concepts ordinarily

associated with jets an shear layers. Figure 7 illustrates the intrinsic response of the

feedback loop at Re = 64,000. At this Reynolds number, the frequency of the

fundamental axisymmetric mode was f 0 = 1700 Hz, while the frequency selected by

feedback was F = 2140 Hz. In an attempt to "disturb" the feedback process, the jet was

also externally forced, using the adder configuration depicted in Figure 2. The forcing

frequency was chosen in this case to be f * = 2020 Hz, and the initial forcing level was

selected such that the corresponding spectral peak in the velocity signal had an amplitude

slightly larger than that of the fundamental axisymmetric mode, as measured by the

feedback sensor. This situation was designed to "favor" an initial frequency, and
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examine the subsequent shear-layer response as the gain is gradually increased. In this

fashion, one alters the initial imprint (or signature) of background jet fluctuations on the

feedback process itself. Figure 7 depicts the spectral amplitude of all three frequencies

as a function of gain. The gain F is shown on a logarithmic scale, and is normalized by

the critical gain F, defined as the value of F which characterizes the gain threshold. A

more refined definition of Fc, based on semi-theoretical considerations is presented in

subsequent developments. The intrinsic frequency selected by the feedback (2140 Hz in

the present case) is called "eigenfrequency", in accordance with Powell (1961). At the

lowest value of F, the axisymmetric and forcing frequencies have comparable

amplitudes. However, no spectral peak is detected at the eigenfrequency until F reaches

approximately 60% of Fc.As F crosses the threshold, the amplitude of the

eigenfrequency rises rapidly and saturates, while the two other peaks quickly become

indistinguishable from spectral background. This characteristic selective growth of the

eigenfrequency is a remarkable property, when one considers that all three initial

frequencies are fed back with identical gain.

Similarly, Figure 8 illustrates the shear-layer response to white noise forcing in

the closed-loop configuration described above. The amplitude of the eigenfrequency

(3320 Hz at Re = 76,300) is clearly dissociated from the background amplitude, which

increases linearly with ". Of all possible frequencies initially introduced via white noise

forcing, only one emerges with a clear spectral peak.

3.3. Hysteresis and band structure

The above results conclusively show the existence of a unique frequency selected by the

enhanced feedback, and that the appearance of this self-sustained oscillation depends on

a gain threshold. Concerns over the repeatability of excitation conditions (i.e. actual

frequency and threshold values) set up by means of enhanced feedback motivated the
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0

measurements presented in this section. The existence and frequency of the self-

sustained oscillations was recorded systematically as a function of gain and Reynolds

number. The resulting maps constitute the feedback "environment", for a given position

of the hot-wire sensor. 0

Figure 9 depicts successive "slices" of the feedback environment corresponding to

different values of the gain. For practical reasons, it is difficult to maintain the non-

dimensional gain F constant, when varying the Reynolds number. Thus, the gain in these

figures is the dimensional gain G, measured in Ns/m 3. In each graph, the thickest lines

are actually collections of closely spaced data points relating the value of the

eigenfrequency to the Reynolds number. The absence of data points in certain regions of

the (Re,G) parameter space simply indicates that no self-sustained oscillations were

present under the particular conditions of Reynolds number and gain setting. In addition,

the frequency of the fundamental axisymmetric and linearly most amplified instability

modes is indicated as a reference. These correspond to Strouhal numbers Ste = 0.0132

and Ste = 0.0163 respectively, as determined experimentally for the present flowfield

(see Nagib et al., 1989). Figure 9 reveals several important facts. The first one is the

accumulation of the data points along well-defined "stages". Each stage is a well defined

entity, with upper and lower bound in Reynolds number, and almost constant frequency.

The second observation is the widening of existing stages, as well as the appearance of

new stages, with increasing gain. At a given Reynolds number, the appearance of a new

stage with increasing gain corresponds to the crossing of a threshold, similar to the case

illustrated in Figure 5. Low gain values are typically characterized by disjoint stages. As

Re varies, the "crossing" of a given stage is accompanied by a noticeable intermittency in

the immediate vicinity of its boundaries. As the boundaries of distinct stages get closer

to one another with larger gain, the intermittency takes the form of a switching between 0

competing tones.
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With a further increase in the gain, the widening of the stages eventually leads to

hysteresis. The hysteresis phenomenon is shown by the overlap of the stages, signifying

that at a given Reynolds number two or more self-sustained oscillations are possible. It

is important to realize, however, that these possible frequencies are usually mutually

exclusive, and that the eigenfrequency that is physically observed depends on the entire

time history of the flowfield. In the presence of hysteresis, the precise extent of a given

stage must be determined by varying the Reynolds number in both directions, using the

stage itself as the initial condition. The careful documentation of the position and extent

of the various stages in the (Re,G) space is an essential consideration ior repeatability

issues, thus justifying the terminology "feedback environment".

A more concise and informative way of representing the feedback environment is

to focus on the boundaries of a given stage. Figure 10 shows the boundary location of

the four principal stages observed in Figure 9, plotted as a function of gain and Reynolds

number. The global structure emanating from this representation is a series of

overlapping bands. Each band is labeled by its characteristic frequency. In reality, the

proper characterization of a band is not its frequency (which varies slightly with Re), but

a certain integer (see section 4.1). For the present discussion, however, each band of

oscillation is tagged by its central frequency. The boundaries of a band can be defined in

several different ways. The convention used here is that a band ends when intermittency

appears. This operational definition avoids ambiguities in the experimental

determination of a stage. If the intermittent region were to be included in the definition

of a stage, the bands would be slightly wider with respect to Reynolds number, and the

measurement would be subject to more error. The widening of the bands with increasing

gain is thus clearly evidenced, and the onset of hysteresis between two adjacent bands at

the higher gains is indicated by the crossing of their boundaries. A great number of

additional bands can be found using, as controlled initial conditions, the external forcing
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of a particular frequency (Reisenthel, 1988).
9

The most common hysteretic configuration ("simple" hysteresis) refers to the

existence of two possible eigenfrequencies at a given Reynolds number. This situation is

characterized by frequency jumps at the edges of the region of overlap of the two

competing bands. More severe cases of hysteresis include situations where three

frequencies compete to feed back. This special case can lead to curious frequency

modulation effects, as shown in a later section. The rich band structure underlying the

feedback environment is further illustrated in Figure 11. In this case, the feedback probe

was positioned farther downstream (X/D = 0.30), with a dimensional gain G = 0.033

Ns/m3 . The increase in the streamwise position of the sensor reveals a large number of

bands, particularly at the lower Reynolds numbers. A consistent feature of the

eigenfrequencies is the fact that their value generally lies within the interval delimited by

the fundamental axisymmetric and most amplified frequencies. Figure 12 presents the

various stages at two (X/D;G) conditions using the Strouhal number Ste based on initial

momentum thickness ( and jet velocity U1 . It is clear that the eigenfrequency associated

with feedback does not scale with shear layer thickness. The scaling of the

eigenfrequency and the role of the shear-layer instability as a vehicle for the

amplification of disturbances are examined section 6.

Hence, a complex band structure controlling hysteresis and frequency jump S

phenomena underlies the enhanced feedback environment. The dependence on the

"path", or "start up" conditions of the flowfield for nominally identical Reynolds number

and excitation conditions has been clearly illustrated. The mapping of the 9

eigenfrequency bands was found to be crucial to the understanding of the role of initial

conditions in the frequency selection process.

3.4. Insensitivity to external disturbances



19

Earlier results illustrating frequency selectivity have shown the existence of spontaneous

oscillations in the feedback loop. The intrinsic nature of this instability was documented

using external forcing which altered the initial signature of the jet (Figure 7). In this

case, the forcing levels were kept constant, while the feedback gain was varied.

Therefore the amplitude of all frequencies was nominally affected by an equal amount.

Nevertheless, an increase in the gain was shown to establish a unique self-sustained

oscillation that was independent of the nature (i.e. harmonic or white noise) of the initial

forcing. In order to evaluate the resilience of the eigenfrequency to external forcing, the

results presented in this section examine the case where the total gain is fixed, and the

forcing levels are varied. This represents a very stringent test since the proportion of

energy of the eigenfrequency F and forcing frequency f * is now deliberately varied over

several orders of magnitude. An additional complication arises from the fact that the

forcing frequency is introduced twice in the feedback loop: once by direct input from the

signal generator, and once through the hot-wire signal.

Figure 13 depicts the destabilization of the eigenfrequency (F = 3340 Hz) with

increasing forcing level. The open-loop response of the shear-layer at the forcing

frequency (f * = 3266 Hz) is shown for comparison with closed-loop excitation. One can

deduce from the average 10 dB increase in the closed-loop response of the external

forcing that the fluctuation must be approximately in phase at the adder stage of the

feedback loop (see Figure 2). Despite the net increase in the amplitude of the forcing

signal, the energy of the eigenfrequency remains constant over two orders of magnitude

of the forcing. A similar case of excitation is presented in Figure 14, where the forcing

frequency was changed to f * = 3222 Hz. The closed-loop amplitude of the forcing

fluctuation is now smaller than the open-loop response. This indicates that the fraction of

the forcing signal that is fed back to the adder is out of phase with the signal generator

output. With this choice off*, it was not possible to disturb the eigenfrequency within
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the range of amplitudes that could be generated. Figures 13 and 14 consider the case of

fully established self-sustained oscillation, using a non-dimensional gain F = 0.0176.

Similar measurements were made closer to the gain threshold at F = 0.0044. These

measurements were performed with forcing frequencies chosen such that the excitation

was respectively in phase and out of phase at the adder. Predictably, the range of forcing

amplitudes at which the eigenfrequency remained insensitive to external forcing was

somewhat decreased, as compared to the results of Figures 13 and 14. In any case, it was

clear that the intrinsic character of the eigenfrequency is not limited to small excitation

levels, since the amplitude of the eigenfrequency remained unaffected for several orders

of magnitude in either case. Thus, the combination of enhanced feedback with external

forcing provides clear evidence of the intrinsic nature of the closed-loop fluctuations. In

the following, a few analytical results are derived along with the examination of the

spatial and temporal characteristics associated with these global fluctuations.

4. Analysis of feedback constraints based on experimental results

4.1. Eigenfrequency formulation

It was shown that for values of the gain which exceed a certain threshold, self-sustained

oscillations take place, the frequency of which does not scale with initial shear-layer •

thickness. The band structure underlying this phenomenon provides a concise

representation of the feedback environment, compatible with the various observed non-

linearities (frequency jumps, hysteresis). Some basic questions remain to be answered, 0

however. For example, what is the origin of this global instability, and how does its

frequency scale?

Figures 13 and 14 illustrated the effect of externally forcing the jet, in a closed- 0

loop configuration. The main conclusion drawn from these results pertained to the
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relative insensitivity of the feedback instability to external forcing. The experiments

described in these figures also revealed that the choice of the forcing frequency f *, was

an important parameter. For certain values of f *, the closed-loop amplitude increased

with respect to the open-loop response, whereas other choices of f * inhibited the

amplitude associated with this frequency of oscillation. It was suggested that the fraction

of energy reinjected in the feedback loop in these cases was respectively in phase and out

of phase with respect to the forcing signal.

This hypothesis was experimentally verified by systematically varying the forcing

frequency in small increments around the value of the feedback frequency. At each

frequency, the gain and forcing amplitude were kept constant. From the spectrum of the

feedback signal, the relative amplitudes of the fed back (AF) and forcing (Af.)

frequencies were recorded. Figure 15 presents their ratio as a function of frequency. The

data are shown for two values of the gain (F = 0.0044 and F = 0.0088), at Re = 76,000.

The value of the eigenfrequency was 3330 Hz and 3340 Hz at the low and high gain

respectively. Figure 15 demonstrates that the relative amplitude of the two frequencies

varies by several orders of magnitude (for F = 0.044), as the forcing frequency scans the

range 3000 Hz <f* <3550 Hz. The sharp dips in the amplitude ratio were

experimentally observed to correspond to the simultaneous enhancement of the forcing

frequency, and inhibition of the eigenfrequency. These dips may be considered as a form

of resonance. Staubli and Rockwell (1987) referred to the above phenomenon as

"quenching". Not surprisingly, this behavior was less pronounced at F = 0.0088, owing

to the increased resilience associated with higher gains. The regular structure displayed

by the results of Figure 15 adds considerable insight to the feedback phenomenon. In

particular, it suggests a relatively small frequency increment Af between adjacent bands.

It appears therefore that the permissible bands are much closer to each other than

suggested by the results of Figure 9.



22

Further evidence of the competition between self-sustained oscillations can be

obtained in the vicinity of frequency jumps. Figure 16 represents the hysteresis diagram

obtained for X/D = 0.17, using a dimensional gain G = 0.045 Ns/m 3 . The solid and

dashed lines in this figure indicate respectively the observed stages and the location of

observed frequency jumps, as a function of Reynolds number. The Reynolds number

was varied in both directions from the middle of each stage, to ensure that the bounds of

the stage were correctly determined. The configuration illustrated by Figure 16 involves

a complex case of three-frequency hysteresis around Re = 75,000. Most cases of

hysteresis involve only two competing frequencies. In these situations, the self-sustained

oscillation is generally a pure tone: the intermittent presence of the other frequency is

only felt very close to the jump location and for low gain values. However, no stable

quasi-periodicity is ever observed when two frequencies only are in competition. In

other words, the "solution" jumps from one limit cycle to the other; i.e., there is no true

coexistence of the eigenfrequencies.

The situation is completely different, however, in the proximity of jumps

corresponding to three-frequency hysteresis. The small circles in Figure 16 indicate the

location where spectral measurements of the streamwise velocity were made. The

corresponding power spectra are shown in Figure 17. For Reynolds numbers smaller

than 75,000, the feedback signals corresponded to pure tone oscillation, as indicated by

their harmonic spectra. Immediately after the jump, however, there is a dramatic change

in the character of the velocity signal. The spectrum at Re = 75,700 displays a multitude

of coexisting peaks. This quasi-periodic band transition was found to be highly

repeatable, but critically sensitive to probe positioning (see Reisenthel, 1988). However,

the quasi-periodic band transitions of the type illustrated in Figure 17 appear to be the

exception more than the rule. Further inspection of the velocity signal revealed a

remarkably regular structure in the spectrum; in addition it appeared that the fundamental
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frequency of the oscillation was subjected to some form of frequency modulation.

Incidentally, the spacing between neighboring peaks is approximately Af = 80 Hz, which

is the same value that was obtained by the introduction of an additional forcing frequency

(Figure 15). The above results support the hypothesis that a regular structure of

competing self-sustained oscillations underlies the frequency selection mechanism.

We now examine the relation between the phase of the closed-loop instability and

the regular sequence of resonances shcwn in Figure 15. Before any attempts to quantify

this concept, the hypothesis of phase dependence is examined on the basis of physical

observation. In particular, phase variations have been suggested by the modification of

the forcing amplitude in the closed-loop configuration of Figures 13 and 14. If a steady

self-sustained oscillation is to feed back, the instability wave must be "in phase" with

itself at any point in the feedback loop. Empirical observation also suggests that these

oscillations tend to always maximize their amplitude under proper gain conditions. This

is essentially similar to observations made by Powell (1961) regarding the edge tone

phenomenon. Conversely, if the wave length of a particular frequency is such that it is

"out of phase" with itself after going through the feedback loop once, then its amplitude

will be effectively reduced by the introduction of feedback. Naturally, this criterion is

overly simplistic, since one must consider the evolution of a fluctuating signal as it

travels more than once around the feedback loop. It is clear, however, that if Uie signal is

a pure tone, its amplitude will be maximized, under the condition that there be an integer

number of wave lengths around the loop.

Assuming a self-sustained oscillation of frequency f, the various phase delays

(denoted AD) are calculated according to: At = 27tf t, where 't designates a time delay.

The phase origin in the feedback loop being arbitrary, the acoustic delay is first

considered. As a pressure wave propagates from the speaker to the lip (distance d), the

wave retardation is A(Da = 2ntfdIC o, where C o designates the speed of sound.

0 ~ mmmnu nnmI ~~NIN nn ]n
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Momentarily ignoring phase relations at the point of receptivity, and assuming a constant

phase speed C for the hydrodynamic branch of the loop, we express the hydrodynamic

phase delay: ADh = 2tJX/C. The phase change associated with the electronics of the

feedback loop was negligible. Finally, the effect of the speaker itself was determined

experimentally. A microphone was placed at the closest possible location from the 0

speaker cone (i.e. approximately 10 mm away), and the transfer function of the speaker

was determined using white noise input. The phase of the transfer function was found to

vary almost linearly with frequency, indicating a constant time-delay 't = 0.56 ms.

Therefore, if 4) denotes the phase-lock due to linear coupling at the point of receptivity,

between the incident pressure wave and the initial velocity fluctuation, the global

feedback condition ( A(D, = 2rn) is expressed by the condition:
i

27tf-d+2f-+2 rftc s +=2n, n =1,2,3... (1)
CO C

Nc -t that the above notation does not suggest that 4 is a constant. More importantly, the

simple addition of 4 to account for the receptivity process is not intuitively obvious.

Some encouraging results, however, can be derived from Bechert's (1982) theoretical

analysis. Bearing in mind some of the restrictions of Bechert's calculations (inviscid

parallel flow, E9 = 0, etc.), it can be shown that in the limit of large X (X/% > 2), the

phase-delay between the high-speed side Helmholtz-type contribution of the streamwise

velocity and the input pressure gradient at the lip is: (2itfX/Uj - 57/8). By analogy with

equation (1), one deduces in this case: C = U and 4 = 57r/8, for a vortex sheet and small

Strouhal numbers. Therefore, it is believed that the introduction of 4 0 in model equa-

tion (1) is justified, to a first degree of approximation. For the real shear-layer under

investigation (129 < Re@ < 193), the possible dependence of 4 on Strouhal number and

various flow parameters is unknown, and its value was arbitrarily set to zero in the
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following numerical implementations of equation (1), rather than assuming a functional

form for 4.

Equation (1) represents an eigenvalue problem, since a solution (the "eigenfre-

quency") to the feedback model equation only exists for integer values of n (the eigen-

values). Using equation (1), one can solve for the eigenfrequency:

fn = d (2)

Equation (2) reveals that because of the receptivity term 0 (and also because of the

dispersive nature of instability waves), the eigenfrequencies f, are not, in general,

expected to be harmonically related. This means that the feedback competition between

a fundamental frequency with some of its harmonics is unlikely. Coawersely, should the

simultaneous feedback of several eigenfrequencies be observed, issues of frequency lock-

ing could play an important role in furnishing insight into the dynamics of these instabil-

ity waves. Figure 18 constitutes an example of the implementation of equation (2),

which is compared with the bands detected at X/D = 0.128 using a dimensional gain G -

0.132 Ns/m3 , and for Reynolds numbers ranging from 45,000 to 85,000. It is clear that

the observed stages indeed correspond to eigenfrequencies of the type described by (2).

Hence, the eigenfrequencies f, represent the set of "allowable" frequencies for self-

sustained oscillations, but do not offer any explanation for the eigenvalue selection pro-

cess as a function of Reynolds number. This question is examined in detail in section

4.2, and in the discussion. Further experimental verification of the suggested model was

performed by varying the distance d between the speaker and the lip from d/D = 70.7 to

d/D = 30.5 and d/D = 4.5. At the closer speaker locations, less quantitative agreement

was found between the model and the experimental data. It is clear from equation (2),

that acoustic and hydrodynamic delays d/C o and X/C play similar roles, as far as phase
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0

is concerned. Figure 19 is a comparison of the predicted eigenfrequencies with the

observed bands at X/D = 0.295. Once again, there is at least qualitative agreement

between prediction an-d experiment. In particular, the decreased eigenfrequency spacing

(fn+1 -fn,) results in a larger number of observable frequencies. Consecutive stages are

still found to correspond to 2n phase jumps, and the small quantitative differences

between data and model are principally attributable to an overall phase shift. Since phase

changes in a closed-loop configuration always manifest themselves by a shift in the fre-

quency of the fluctuation, small phase changes across the shear-layer can produce sizable

frequency variations, depending on the total length of the feedback loop.

Thus, it has been shown that the feedback condition restricts the frequency of self-

sustained oscillations to a discrete set of permissible eigenfrequencies. This condition

can be regarded as a constraint which effectively "closes" the system.t There has been

more than one indication at this point that the enhanced feedback configuration makes

the flow behave like a closed system, with respect to instability waves. The most striking

feature corroborating this view is the global insensitivity to external disturbances. Figure

19 brings to attention a point of interest: in the limit of large delays (speaker at infinity,

or large X/D), the eigenfrequencies become infinitely close to one another. One may

then expect the resilience of the system to external fluctuations to collapse, since all fre-

quencies are then allowed to feed back. It is tcmpting to hypothesize that this situation

constitutes the open flow limit, although such questions may not be answered by phase

considerations alone. Conversely, the above results underline the crucial importance of

incidental boundary or feedback conditions in both experimental and numerical investi-

gations of open flows.

t The terminology is inspired by analogy with closed flows, for which resonances occur when
particular wave-length conditions are favored by the presence of solid boundaries. 0

S
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4.2. Transient amplitude evolution

There are several ways to analyze the time evolution of a closed loop system. The

present analysis decomposes the system into two separate parts. First, the open-loop

response of the system to external forcing is examined independently. Then, properly

formulated feedback constraints are added to the open system in order to determine the

global closed-loop response.

Quasi-steady Analysis. The first element of the feedback loop is the hydrodynamic

branch, defined as the portion starting from the input pressure fluctuation at the lip, and

resulting in an output velocity fluctuation measured at the sensor location. The charac-

teristics of this portion can be examined by determining its non-linear transfer function.

The transfer function is experimentally measured in a controlled open-loop forcing situa-

tion, in which known input pressure fluctuations at the lip (p') result in amplified stream-

wise velocity fluctuations u'X at the sensor location. Owing to the shear-layer

amplification characteristics, the transfer function is expected to vary with the frequency

of the input disturbance. Three typical transfer functions are shown in Figure 20. These

were measured at x/D = 0.16 and Re = 61,600, for forcing frequencies equal to 2240 Hz,

2500 Hz and 3700 Hz respectively. The open-loop response of the shear-layer is shown

over a range of forcing amplitudes covering as many as five decades. Non-dimensional

pressure fluctuations smaller than 2.10-6 could not be perceived by the human ear, but

had measurable effects on the shear-layer. For reference, it should be noted that the low

sound pressure levels used by Shakib (1984) in the same facility corresponded to

SP/PUj2 = 5. 10- 5. This level is considered very small, as compared to many of the

available investigations on forced shear layers (see Ho and Huerre, 1984), and

corresponds to a total amount of input energy equal to the freestream turbulence inten-

sity, concentrated in a single frequency.

The shape of each transfer function can be characterized by three regions. At low



28

energy inputs, the velocity fluctuation has a constant spectral amplitude, equal to the

level of the background spectrum at that frequency. At the largest levels of fluctuation,

the velocity fluctuation reaches saturtion. For the large intermediate range, however,

the slope of the transfer function remains constant. More importantly, all slopes are

approximately unity. The unit slopes in Figure 20 indicate the expected proportionality

relation between input (p') and output (u' x ) fluctuating amplitudes. This proportionality

relation frequently holds over more than three decades of the forcing, although some

exceptions were found to exist for forcing frequencies close to the dominant instability

modes of the unforced jet (Reisenthel, 1988), for which non-linear interactions presum-

ably play an important role.

Due to the existence of background fluctuations and because of the saturation

range, the transfer functions are by essence non-linear. This is to be contrasted to the

feedback portion of the loop (from the sensor to the lip), which is strictly linear. The

return leg corresponds to the artificial part of the loop. This includes in particular the

electronic stages of amplification, and the generation and upstream propagation of acous-

tic waves. The global gain associated with the enhanced feedback is therefore the mere 0

multiplication of various known transfer functions (G = I"gi). Each of the elements of
i

the loop is linear, and hence the enhanced feedback effect can be simply expressed as:

p " UO
= ux (3)

1 2 Uj

where r is the non-dimensional gain of the loop. Equation (3) is to be regarded as the

amplitude counterpart of (2), since these equations govern dual aspects of the feedback

problem.

For the remaining of this discussion, the previous notation used to signify non-

dimensionalized velocity and pressure rms fluctuations is replaced by the symbols u and

S
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p respectively. For consistency with the orientation of Figure 20, equation (3) is con-

1
sidered in its reciprocal form (u = -p), which represents a set of curves parameterized

by F. These feedback constraints are graphed in Figure 21 as a series of parallel curves,

Cr., horizontally shifted from (F = 1) by an amount In (F). Geometrically speaking,

given the gain 1-, a pair (u;p) must belong to Cr in order to represent a self-sustained

oscillation. Evidently, the actual value of u orp is undetermined a priori. However, in

the closed-loop situation, (up) must belong to the open-loop non-linear transfer function

curve, as well as to the gain curve C r. The operating point is thus defined as the inter-

section (if it exists) of both curves. Figure 21 shows the open-loop transfer function

corresponding to the eigenfrequency selected by feedback at Re = 61,600 and X/D =

0.16. Two opposite gain configurations are hypothetically considered: at the high gain

value (1 = 0.01), the amplitude of the velocity fluctuation must coincide with the satura-

tion amplitude. In contrast, at low gain values (e.g. F = 0.001) the amplitude remains

equal to the background value. Furthermore, the quasi-parallelism between the open-

loop transfer function and gain curve is recognized as the cause of abrupt amplitude

changes, as the gain is increased through a critical value. The documented observation of

a gain threshold (Figure 5) can therefore be attributed to the linear portion of the open-

loop transfer function.

The above considerations regarding the existence of an "operating point" (u;p) in

the feedback loop are steady-state considerations. Empirical observation, however, sug-

gests that transient effects can be quite appreciable. Specifically, it was shown that as the

gain is suddenly increased beyond a critical value, the jet starts "ringing". This ringing

corresponds to the transient amplitude growth of a well defined eigenfrequency. The

observation that shorter transients are associated with larger gains also suggests that the

gain participates in some sense in the scaling of the feedback instability.

The quasi-steady increase of the gain through the threshold was shown to generate
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a rapid but smooth amplitude variation, the smoothness being an artifact of the long-term

averaging. In reality, intermittent ringing is observed for values of r close to the thres- •

hold. The intermittency factor is related to the near-tangency of the open-loop transfer

function and gain curves: close to the point of tangency, infinitesimal disturbances of

pressure or velocity can cause the instantaneous operating point (u;p) to move erratically

along the gain curve. Hence, at the point of tangency, random microscopic noise can

result in macroscopic fluctuations. In addition to intermittency phenomena, the proxim-
9

ity of the threshold is associated with amplitude hysteresis, as the apparent value of the

critical gain is dependent upon whether F is increased or decreased. The inset of Figure

21 (bottom graph) illustrates how jump phenomena around the threshold can be related

locally to the slight concave curvature of the transfer function. In addition, for slightly

supercritical values of the gain, one notices the possibility of a narrow "channel" between

the open loop transfer function and the feedback curve. The physical significance of

channels in first return maps has been shown by Pomeau and Manneville (1980) and

Berge et al. (1984) and was related to so-called "laminar periods" in temporally intermit-

tent regimes. It is not certain at this point whether Pomeau and Manneville's theory

might be applicable to the present phenomenon, although the gathering of statistical

information of intermittency close to critical gain might prove to be a worthwhile avenue

of research in establishing possible connections with their model. This exemplifies how

the actual details of the open-loop characteristics can be enhanced temporally by closed-

loop feedback.

Critical Gain. Two main questions are addressed in the present section: can the

(so far experimentally observed) existence of a critical gain be substantiated on analytical

grounds, and what is the physical significance of the critical gain, in relation to the shear

layer characteristics? 0

We first focus on the modeling of the open-loop transfer function. The principal



31

characteristics of the non-linear transfer functions are: a range of linear dependence of u

on p followed by the saturation of u. In accordance with Miksad (1972), we consider the

equation of lowest possible order, capable of displaying the above non-linear character.

Let u' be the rms wave amplitude. Consider the following Stuart-Landau like equation:

d u' 2  -2c i u' 2 + 23u' 4  (4)

dx

where the quadratic term 2p3u' 4 merely represents the smallest order non-linearity that

can act as a limiter of the initially exponential growth of the energy. Note that --ai > 0 is

the linear spatial amplification rate of the disturbance.t The term [P < 0 is the so-called

Landau coefficient. Dividing (4) by u'2 , one finds the following analytical solution:

2 2ox

- -2a, x
c

where c is an integration constant which can be related to conditions at x = 0. Substitu-

tion in (5) yields:

U 2 e --2cix

U1.02  .ai + 3U'o02  _1e- ai x)

Finally, by letting x -* -** in (6), the Landau coefficient 03 can be expressed as a function

of the saturation amplitude, u. 3 = . Substitution in (6) yields after non-

dimensionalization by Uj:

U x U'0  e-a (x
= -- (7)

U1 ] (1 -e -

t The notation comes from linear stability theory, where a ordinarily represents the complex
wave number in the normal mode assumption.
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Equation (7) therefore allows us to express u',lUj as a function of u'olUi, knowing the

saturation amplitude u'-, the sensor location x = X, and the spatial amplification rate

-a i . For.the Reynolds number and probe position corresponding to the data of Figure

21, the saturation amplitude is approximately u'- = 0.08. At a fixed x, equation (7)

represents a set of curves u'. / Uj = f(u'O/U j ), parameterized by --a i . In order to make

the comparison with the measured open-loop transfer functions more quantitative, the

spatial amplification rate was measured directly with open-loop forcing at the feedback

frequency (f*= F). The result was then used to find u'0 , knowing X, Ui and u'.. Fig-

ure 22 shows the open-loop transfer functions (u'x as a function of p') at two frequen-

cies, along with their corresponding Stuart-Landau fits (u'x as a function of u' o ), with

the scale of implied initial conditions U'o/U j shown at the top of the graph. As expected,

the Stuart-Landau curves appropriately reflect the linearity between u'x and p' at small to

moderate forcing levels, and display saturation at the higher amplitudes. The relation 0

between the two horizontal scales used in Figure 22 is naturally governed by the recep-

tivity phenomenon. Much study has been done on this subject. In particular, Morkovin

and Paranjape (1971) conjectured a generalization of Freymuth's (1966) law, from which

one can derive (using the current notation) the following general relation:

Uo B L(p) (8)

Uj IU2

where B is the so-called "receptivity constant", which is presumably dependent on Ste

and geometry. Morkovin and Paranjape's improvement mainly concerns the fact that

L (p) is some linear operator of the pressure. The structure of the spatial operator gave

insight into the sensitivity of sharp separation edges to sound excitation. Equation (8) is

consistent with Freymuth's (1966) measurements which covered the range 61 < Ree <

334. For comparison, the present experiment covered the range 123 < ReE < 193. It is
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clear from equation (8) that for the fixed geometry (i.e. jet nozzle and sound source)

under consideration, the "constant" B is proportional to the quantity R = hpUj u0 /p'.

The dependence of R on freestream velocity, Uj, frequency of the excitation, co, and

amplitude p', is unknown in general, despite some useful results due to Bechert (1983)

that are valid in the limit of negligible momentum thickness and small frequency. There-

fore, the point of receptivity will be regarded as a "black box" in the feedback loop,

where R is the receptivity transfer function.

The parallelism of the Stuart-Landau and transfer function curves reflects the linear

coupling between p' and u' 0 . This linearity in amplitude (DR /p' = 0 for fixed Reynolds

number and fixed frequency) was experimentally verified, and R was found to be approx-

imately constant for three decades of the forcing level. These results are consistent with

recent measurements by Sreenivasan et al. (1987). The average value of the receptivity

transfer function R was used in equation (7) to provide a semi-empirical analytical fit to

the open-loop transfer function:

u x R p" e- FX

U 2
l2P u[ *p (1-e - 2 .x)

In order to express the fact that the fluctuation is a self-sustained oscillation, the addi-

tional feedback constraint (3) was introduced in (9) to eliminate p' and yield the ampli-

tude (u',/Uj) of the fed back fluctuation as a function of f:

u.X= U'. 1-R2F2e-2 X (1)
. [ [2r2(1~e-c-X)0

For X > 0 and -cc i > 0 this equation admits a physical solution only if the following rela-

tion is satisfied:

.. ...
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e > --- 11, c  (11)

Equation (11) expresses the fact that no self-sustained oscillations can exist for gains F

smaller than a "critical gain" Fc.Below Fr, the fluctuation amplitude remains equal to

the background value. Above the critical gain, steady-state closed-loop fluctuations can

exist, the amplitude of which is described by equation (10).

The existence of a gain threshold was first evidenced by physical observation. The

above results have substantiated and quantified the concept of "critical gain". The impli-

cations of a critical gain criterion are now examined in terms of the temporal stability

characteristics of self-sustained oscillations. At a fixed Reynolds number and fixed sen-

sor location, consider the feedback frequency and its spatial amplification rate -ai. If

the feedback loop (global gain I-) is suddenly closed at time t = 0, and if F > Fc, the

amplitude of the selected eigenfrequency increases from its natural background value to

the final saturation amplitude. The final amplitude can be predicted using equation (10),

knowing the open-loop behavior of the system, but what can be said about the transient

process? We next use standard first return map arguments to describe this evolution. 0

The temporal evolution of the system can be described in the following way. At t < 0,

the velocity fluctuation (u) has background spectral amplitude. The pressure level (p) is

undetermined a priori and presumably depends on both the amount of natural feedback of -

the jet and extrinsic environmental forcing. At t = 0, u assumes an initial value u0 , and a

switch is hypothetically closed. Through the feedback loop, this initial velocity fluctua-

tion results in a pressure fluctuation p 1. This pressure fluctuation; once it is felt at the lip, S

will generate an initial velocity disturbance through receptivity. This new velocity

fluctuation at x = 0 undergoes rapid exponential growth in the streamwise direction, gen-
0

crating in turn a new fluctuating amplitude u 1 measured at x = X. The entire process is

reiterated until convergence is attained. The convergence point (u* ;p.) corresponds to

S
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the steady operating point previously defined as the intersection of the feedback curve

C r and the open-loop transfer function.

The above scenario describes a fixed point problem, and the time evolution of the

system can be graphically represented using a first return map (i.e. plotting one iterate

versus the previous one). The use of such iterated maps is common in the analysis of

dynamical systems, where the dynamics of a system are simplified by considering only

successive iterates at discrete times. To construct the map, we start with an initial condi-

tion (u 0 ;p0 ) on the non-linear transfer curve. The feedback process itself is represented

by a horizontal projection onto the gain curve Cr. The combined receptivity and spatial

amplification stages (hydrodynamic part of the loop) is represented as the vertical projec-

tion of (u 0;P 1) onto the open-loop transfer curve, yielding the new state of the system.

This graphical construction (illustrated in Figure 23) is reiterated until a fixed accumula-

tion point is reached. Each step in the construction, from (ui ;pi) to (Ui+ l ;pi+1 ) takes a

fixed amount of time t, equal to the basic "around-the-loop-once" delay of the feedback

process.

The introduction of equation (4) was used to obtain an analytical representation of

the saturation of the shear-layer open-loop response. It is clear, however, that a

simplified estimate for the temporal growth of closed-loop disturbances can be obtained

by considering only the linear part of the open-loop transfer function. In other words, the

horizontal and vertical projections performed at each time step (see Figure 23) can be

approximated respectively by the following relations:

Pi+l = I"ui (12)

ui+ 1 = + R Pi+ e -iX (13)

The first equation represents the feedback condition, whereas the second reflects the

receptivity process followed by linear spatial amplification. Substitution of (12) into (13)
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yields:

Ui+, (14)

ui Fc

in which use has been made of the expression for the critical gain 17, (equation (11)).

Thus, {ui )is a geometric series of ratio (F/rc). At any time step i, the fluctuating

amplitude may therefore be expressed as a function of the initial condition u0 as:

ui = Uo(W/Fc)Y. The time between successive iterations is equal to the sum of all delays

in the loop (,t = 1Ta +'"h +T.,). Therefore, one may express the discrete times correspond-

ing to the completion of each step as: ti = i T. Finally, in the limit of continuous time,

one obtains the temporal evolution equation:

In (rI/ )

u (t) = uoe (15)

It should be stressed that the above result holds for small times (i.e. away from satura-

tion), but large number of steps (continuous time approximation). Both restrictions are

reconcilable in the limit of F/Fc ratios of the order of unity.

Thus, the fundamental result implied by the first return map arguments is that the

temporal growth of fed back disturbances is, in a first approximation, exponential. Their

constant amplification rate, a, may be expressed as:

( = 7/J7) (16)
't

Equation (16) results from the linearization and built-in time-delay of the feedback loop.

A gain F > F, will cause exponential growth, whereas F < Fc guarantees exponential

decay. While the exponential growth starts spontaneously due to background fluctuation,

the decay may only be evidenced, when started from an artificial initial amplitude away
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from equilibrium. The exponential decay of disturbances (in the presence of closed-loop

feedback) is to be contrasted with open-loop behavior, for which disturbances convecting

past a stationary probe are expected to produce a sudden decay (i.e. on a time scale of the

order of the convective time, say ./Uj ). Finally, expressing F, according to (11), the

temporal amplification rate may be given as:

In (r) -- (4i X + In (R)
't

Equation (17) therefore relates the temporal amplification rate, a, to the spatial

amplification rate, -ox. As a first approximation, if the gain F of the feedback loop is

held constant, this linear relation suggests that at a fixed Reynolds number, the eigenfre-

quency most likely to be selected by feedback (maximum a') is that which maximizes the

quantity (--aiX + In (R ).

5. Global temporal instabilities

5.1. Temporal growth rates

In order to investigate experimentally the instability characteristics of closed-loop oscil-

lations, amplitude transients were obtained by the sudden closure of an electronic switch

controlling the feedback loop. The total gain of the loop was carefully selected to be

above critical, so that self-sustained oscillations would spontaneously take place after

closure of the switch. The proper synchronization of A/D and D/A transfers ensured that

the recording of the transients started before the feedback loop was closed, and that the

time of closure was perfectly known.

Figure 24a (top) shows the raw velocity data corresponding to the transient growth

of the eigenfrequency at Re = 62,500, for a gain F = 0.00236. By convention, the origin

of time was chosen to correspond to the instant the feedback loop was closed. The

S



38

6

transient behavior displayed in Figure 24a takes place over several hundreds of periods of

the eigenfrequency. The sampling frequency was always chosen to be approximately 30

times the fundamental frequency of the feedback instability (F = 2260 Hz in the present

case). The raw time series was amplitude demodulated using a discrete Hilbert

transform, according to the technique described by Wlezien and Way (1979). Because

the quality of the amplitude demodulation depends highly upon the filtering around the

eigenfrequency, the data were processed in two stages. First the raw time series was

decimated after appropriate low-pass filtering. Secondly, the resulting data were con-

volved with a 58 dB narrow-band finite impulse response filter. The filtered time series

was then used as the input to the Hilbert filter. Figure 24b (center) shows the filtered

time series with the calculated amplitude. Because of the 10:1 decimation factor, there

are only approximately three samples per period in the filtered time series. The fictitious

low frequency undulations visible in Figure 24b are merely the visual appearance associ-

ated with the low sampling condition after decimation. The presentation of the demodu-

lated amplitude envelope, A, was chosen so that both A and -A are shown about the

mean U of the time series. In this fashion, it is easy to apprec.ate how the actual details

of the filtered time-series are faithfully reflected in the calculated envelope. Finally, the

exponential growth rate, a (measured in s-1), is determined according to a = d In (A)
dt

Figure 24c (bottom) shows the logarithm of A as a function of time. Because the data is

generally noisy throughout the transient, the slope is determined using a least squares fit.

Approximately 400 such transients were recorded and similarly processed, using various

conditions of gain, Reynolds number and probe location. An estimate A( of the error on

the growth rate was also systematically calculated, based on the length and mean square

error of the fit. The globally exponential character of such transients is nevertheless

unmistakable, in spite of large uncertainties.

For large growth rates, a noticeable growth of the subharmonic toward the end of

0
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the transient was commonly observed. The digital Hlbert filtering technique was applied

to these transients in order to determine the temporal evolution of both fundamental and

subharmonic frequencies (see Figure 25). The rapid growth of a subharmonic indicates

the pairing which starts near the time when saturation of the fundamental is reached.

Temporal amplification rates of the subharmonic were calculated according to the

method described above. It was shown (Reisenthel, 1988) that there was no correlation

between the growth rates of fundamental and subharmonic frequencies. Whether the

sudden appearance of a subharmonic and the existence of a critical gain for the funda-

mental are related or not to a bifurcation sequence is not known at the present time.

For values of F/fe of five or larger, a characteristic step-like ripple was observed

in the growth of the demodulated amplitude, corresponding to the discrete steps shown

by first return maps such as Figure 23. It can be shown that in spite of the presence of the

40 ripples, the average slope 3 corresponding to this geometric progression is still related to

In (r/1, )
the gain according to: c =. Therefore, a does not always represent a rate of't

growth associated with true exponential amplification, but is invariably related to both

feedback loop (F, ta) and flow ('ch, 0, 1,) characteristics via equation (16). Conversely,

(16) can be used to deduce the critical gain I,, from measurements of a as a function of

gain. This equation applies equally to negative amplification rates. Figure 26 depicts a

case of exponential decay for the same flow conditions as Figure 24, with a subcritical

gain such that F/, = 0.76. The acoustic delay is evidenced by the fact that the exponen-

tial decay does not begin until approximately ta = 10 ms after the opening of the elec-

tronic switch. The initially high amplitude of the fluctuation is obtained by means of

external forcing, at the eigenfrequency. The forcing is stopped at t = 0, when the switch

*(K 2 in Figure 2) is opened. It is clear from Figure 26 that a characteristic exponential

range persists for a substantial number of periods of the eigenfrequency. In the present

case, the decay rate (;=-14.5 ± 1.7 s-1), was determined from fitting the amplitude over
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approximately 400 cycles of the fundamental. Despite inherent experimental difficulties

associated with the measurement of such decays, their exponential characteristic is dis-

tinctively symptomatic of feedback, since step-like functions are expected to appropri-

ately describe the shape of amplitude decays in a convectively unstable flow. This also

suggests that the proper measurement (e.g. in an anechoic chamber) of these decays in

the absence of enhanced feedback might give insight into the actual strength of the feed-

back process occurring in natural shear layers.

Figure 27 shows single realization measurements of the growth rate a as a function

of In (I). For clarity, the uncertainty bars corresponding to Aa are not shown in this

figure. Despite the experimental scatter, the logarithmic dependence of Y on F is clearly 0

demonstrated, in support of equation (16). A least squares fit through the data yields an

estimate for the critical gain Fc, as well as for the total loop delay r. The above method

for the determination of the critical gain is considerably more accurate than a direct esti-

mate based on the perceived location of the gain threshold, owing to the hysteresis and

intermittency phenomena described earlier (see Figure 5). In conclusion, the present

experimental measurements demonstrate that under conditions of closed-loop feedback,

self-sustained velocity fluctuations may undergo a temporal instability. Furthermore, the

temporal growth rates appear to be satisfactorily described by equation (16).

5.2 Spatial independence

The measurements presented thus far have been obtained from the feedback probe itself,

namely: the acquired signal at one location in the shear layer was also the forcing signal.

In this configuration, the dual functions of the hot-wire sensor as both part of the feed-

back instrumentation and as a measuring device cannot be dissociated. In order to docu-

ment the spatial characteristics of the shear-layer during transient growth, these two func-

tions had to be separated, owing to the large sensitivity of self-sustained oscillations to

0
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the actual location of the sensor. Therefore, two hot-wire sensors were used; the first one

for spatial sampling, and the second one as the feedback sensor. The positioning of the

feedback probe on the opposite side of the jet was chosen so as to minimize probe

interference problems, but also in order to provide a means of verifying the axial sym-

metry of the instability waves. The data presented here were acquired at three Reynolds

numbers, one of which (Re = 42,000) corresponded to the naturally enhanced jet column

mode condition (see Nagib et al., 1989).

The shear layer response was investigated along lines corresponding to y /5 loca-

tions of 0.0, -0.5, -0.75 and -1.0, respectively, where 5 designates the local shear layer

thickness, and y is counted positively outward, from the local position of largest mean

shear (see Figure 2). The first two radial locations correspond to the middle and high

speed edge of the shear layer respectively, whereas the last two are nominally within the

freestream of the unexcited jet. The feedback probe was located at a constant X/D = 0.2

for this experiment, while the downstream position of the sampling probe (x) covered the

range 0.1 < x/D < 0.4. At each location of the resulting (x ,y) grid, 13 transients were

recorded, corresponding to various gain conditions F. The signals of both probes were

simultaneously sampled, and the transient data were analyzed using the amplitude demo-

dulation technique described previously. Figure 28 is an example of the growth rates

obtained at various radial locations, as a function of In (F). As expected, the logarithmic

dependence of a on the gain is verified, within experimental scatter. Figure 28 also illus-

trates the fact that the temporal growth rates at any given gain appear to be uncorrelated

with radial position.

Streamwise Dependence. In order to examine the dependence of temporal growth

rates with respect to the streamwise location x of the measurement, the values of a

obtained from each of the two probes are compared to each other for various values of

the gain. Figure 29 examines the degree of correlation between a1 measured by the
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sampling probe, and a 2 measured by the stationary feedback probe, at various down-

stream locations of the sampling probe, and includes cases of temporal amplification as

well as temporal decay. In this representation, the gain is not explicitly shown, but r

determines the magnitude of 0 and a 2. The identity line is indicated as a reference.

The correlation coefficient between a, and 0"2 was found to be Roo, = 0.94 at Re =

72,500 and R 0102 = 0.99 at Re = 60,000. This result indicates that the growth rate 0 is

not a function of x. Incidentally, the high value of the correlation R 012 confirms the

axial symmetry of the instability waves, since the two probes were placed at different

azimuthal positions. Thus, over the investigated range of spatial locations (x _ 3X), and

for given flow and feedback conditions, the value of Y is independent of downstream dis-

tance.

The condition )Oa/ x = 0 now allows the values of a, acquired at different stream-

wise locations but same gain to be considered as independent realizations of the same

measurement. Therefore, the large uncertainties associated with individual measure-

ments of 0 can be reduced by averaging realizations together, for each probe. The result-

ing mean values of 01 and 02 can be compared to eac' other for different values of the

feedback gain. By doing so, an excellent correlation was found between the two probes

(R0 a10 2 = 1.00 at Re = 60,000, and R = 0.99 at Re = 72,500), thus constituting sup-

porting evidence that the temporal growth rate 0 is not only independent of radial and

streamwise positions in the shear layer, but also independent of azimuthal position for the

range x < 3X. The correlations of individual realizations of 0 and 02 are summarized in

Figure 30, for all three Reynolds numbers investigated, over the range of gains

0.87x10 I< F 0.26x10-1 . It may be concluded from these results that the "in place"

linear temporal amplification of feedback disturbances is a global phenomenon, indepen-

dent of space.

Returning to the issue of scaling of the growth rate with a, we now make use of the
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previous findings by averaging a, and 072 in order to reduce measurement uncertainty.

Figure 31 summarizes the scaling of the amplification rates obtained at all three Reynolds

numbers. The critical gain (obtained from the intersection of the least squares fits with

the line of neutral stability) clearly increases with decreasing Reynolds number. The

scaling of F with Reynolds number is of importance, because this term reflects the role

of shear layer characteristics on the global instability.

5.3. Local phase speed measurement

The simultaneous acquisition of velocity signals from the two probes was used to obtain

phase information at various spatial locations in the shear layer. For this purpose, the

stationary feedback probe was used as a phase reference. Cross-spectral analysis of short

data segments was used to calculate the phase difference (01 - 02) between hot-wire sig-

nals, under steady-state and transient conditions. These measurements indicated that the

phase varies linearly with downstream distance. Furthermore, phase distributions were

determined during periods of transient growth, transient decay, and during steady-state.

The calculatcd values of -i-( all fell within 1.5% of each other. The unequivocally

linear variation of phase with downstream distance was used, based on the average of

transient growth, transient decay and steady-state cases for all gain configurations inves-

tigated, to calculate the phase speed C of the disturbance, knowing the eigenfrequency

f = F according to:

[ -1
C = 21tf [._. (18)

At re = 60,000 (F = 2120 Hz; Uj = 18.3 m/s), C IUj was determined to be 0.49. This

value is quite similar to that obtained by other investigators using conventional open-loop

forcing (see for example Drubka, 1981). Reisenthel (1988) confirmed this result by using
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various cases of different amplitudes with on/off open-loop excitation of the jet at the

same frequency and same Reynolds number as the enhanced feedback measurements

presented here, and found a corresponding normalized phase speed C/Uj = 0.48. Similar

results were found at the two other Reynolds numbers, for which the phase distribution

across the shear layer was found to be essentially independent of whether the oscillation

undergoes a transient or has reached steady-state behavior. Similarly, a high degree of

correlation (R ore' = 1.00) was measured between the phases OT and Os, obtained dur-

ing transient growth and steady-state respectively. Thus, the measured constant phase

speeds (of the order of half the jet velocity) are the same as those obtained with conven-

tional open-loop forcing at the same frequency. Finally, the high correlation between

transient and post-transient phases supports the conjecture that the global temporal

growth experienced by the amplitude of the fluctuation does not significantly affect the

local stability properties of the shear layer. 0

6. Discussion

6.1. Comparison with theory

Scaling Considerations. It has been shown both analytically and experimentally that the

global temporal instability of closed-loop sinusoidal disturbances is controlled by the

gain of the feedback loop. This dependence manifested itself in the form of a loga-

rithmic variation of the temporal amplification rate ay, with the gain F. It is important to

appreciate, however, that the controlling parameter is not f, but the ratio F/Fc . While F

is purely a property of the return leg of the feedback loop, Fc on the other hand is deter-

mined by the instability characteristics of the shear layer, the receptivity at the lip, and

the feedback sensor position. Because the 1 factor in equation (17) acts (to a first

degree of approximation) as a passive multiplier in the calculation of the growth rate, the

S
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influence of flow properties on the instability of the feedback loop (i.e. growth, decay or

neutral stability) can be studied be considering the sole functional dependence of r, on

flow characteristics.

The magnitude of the temporal amplification rate a is described by equation (16),

which states that the conditions for growth, decay, and neutral temporal stability can be

expressed by the following relations: r>Fc (temporal amplification), F<r, (temporal

decay), 17=F c (neutral stability). The following expression was also obtained for the crit-

ical gain: IFc = e , where X is the feedback sensor position, -ai is the spatialR

amplification rate, and R the receptivity transfer function. As previously mentioned, the

structure of the receptivity transfer function R = f(Uj1 ,co,E,...) remains greatly unknown,

except for the theoretical results due to Bechert (1982), in the limit of infinitely thin shear

layer and low Strouhal number. Nevertheless, it is clear that for fixed flow conditions

(i.e. fixed jet velocity U1, and fixed nozzle geometry), and constant forcing frequency (0,

R is a constant, as demonstrated experimentally by Reisenthel (1988) over several

decades of the forcing amplitude. Furthermore, since the normalized spatial

amplification rate -'ai G scales with the Strouhal number woE/Uj, it is expected that for

fixed flow and forcin-i LwJBditiurs, !n 1(f' shouid bc. proportional to the feedback probe

position X, in accordance with (17).

As explained earlier, the empirical estimation of the critical gain I-c based on

amplitude jumps or intermittency at the threshold is prone to subjectivity. Therefore, it is

believed that an unbiased way of determining Fc is to calculate a linear fit to numerous

realizations of a versus In (F). This method is quite labour intensive, however, and its

use was illustrated in Figure 31 for three Reynolds numbers at one feedback sensor loca-

tion. Because X was kept constant in these data, we consider instead the closed-loop

amplitude results of Figures 5 and 6, and obtain an approximate determination of the

threshold gain level for each X. The result is shown in Figure 32, where in (I c ) is
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presented as a function of the streamwise position of the feedback probe. Uncertainty

boxes reflect the confidence interval (box height) on Fc, based on the limits of hysteretic

behavior (r, and 172 in Figure 5), while the width of the boxes indicates the uncertainty

on X. Clearly, the expected proportionality between In (r,) and distance between the lip

and the source of feedback appears to be satisfied. This result is the direct consequence

of the linear spatial amplification of disturbances in the shear layer.

In order to further substantiate the validity of equation (11), the variation of I",

with Reynolds number is now examined. Recalling the results of Figure 31, we consider

the three values of 1" obtained at a fixed X/D for the three Reynolds numbers considered

in this study. These values were calculated from the least squares fit of Y against In (F),

and are consequently expected to yield a more accurate determination of the critical gain.

Note that as the Reynolds number changes, the receptivity term R is not expected to be a

constant. An additional complication rises from the fact that the value of the eigenfre-

quency itself changes with Reynolds number. Therefore, in order to clarify the issue of

scaling with Reynolds number, certain hypotheses must be made.

Consider expression (17) for the temporal amplification rate. If it is assumed that

the frequency most likely to be selected by feedback corresponds to the one with the

maximum temporal growth rate max, then for given feedback conditions (F and X con-

stant) and fixed Reynolds number (t constant), the eigenfrequency is that which maxim- 0

izes the quantity (-otX + In (R )). Secondly, we make the simplifying assumption that R

is a constant. As will be discussed later, this assumption is naturally incorrect, but

instructive approximate results can be derived if one is momentarily willing to make it. 0

In any event, the relative importance of the receptivity term in (.-aiX + In (R)) can be

diminished by choosing X to be large. This simply reflects the fact that the dependence

of F, on Reynolds number is exponential through -i, but only algebraic through the

receptivity term R. Under these assumptions, the frequency most likely to be observed is
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that with the largest spatial amplification rate. The scaling of-ai with frequency has

been the subject of much study. It has been shown (see for example Ho and Huerre,

1984) that the normalized spatial amplification rate -ai E) scales with Strouhal number

based on momentum thickness (Ste =f (3/Uj). In particular, the maximum spatial

amplification rate satisfies: -cxi, max = r/E), where K is a constant depending on the velo-

city ratio parameter (Monkewitz and Huerre, 1982). Since the initial momentum thick-

ness is proportional to Re- , the maximum spatial amplification rate may be expressed

as: -i,max = 1Re , where 1J is some positive proportionality constant. According to

equation (17), -ai max corresponds to maximum temporal amplification under the

assumption that R is constant. The total delay t may be considered constant as a first

approximation because of its weak dependence on flow parameters (i.e. by examining

orders of magnitude in equation (1)). It is not obvious, however, that the frequency

corresponding to -'i,ma, should be one of the permissible eigenfrequencies of the sys-

tem. The likelihood is that it is not. However, we argue that due to the broadness of the

spatial amplification curve for shear layers, and to the close spacing of competing eigen-

frequencies (for d >> D), the condition "ai,max = rlRe/2 ought to be approximately

satisfied. If this third assumption is made, then it is justified to replace -ai in equation

(11) by -ai max, yielding:

In (I', -ilRe/2X - In (R (19)

Figure 33 depicts the exponential dependence of F, on Re, based on the data of Figure

31, corresponding to the simultaneous variation of both Reynolds number and eigenfre-

quency. The dashed line represents a least squares fit of In (I') versus "1Re. iL may be

concluded from the closeness of the fit that there is good agreement between the

predicted trend of equation (19), and the experimental data. It is not completely under-

stood, in fact, why such good agreement is obtained, considering the assumptions
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involved (the strongest of which is the constancy of the receptivity transfer function).

However, it may be deduced a posteriori from these results that R is indeed a weak func-

tion of Reynolds number and frequency, as compared to the exponential dependence

associated with the e ' 4X term.

Frequency Selection Criteria. Most of the work presented thus far focussed on the

description of the temporal growth of the amplitude, assuming a self-sustained oscillation

takes place at a well-defined frequency. Also, the expression of phase conditions led to

effective frequency constraints on the closed-loop system. Experimental observations,

however, suggest that only few of the predicted stages are actually observed. Hence,

phase considerations alone do not give a satisfactory explanation of the observed fre-

quencies. The present section examines the role of flow conditions in the frequency

selection process. Two main ideas are contrasted. First, arguments suggesting that the

temporal instability should scale with flow characteristics are presented. Secondly, some

results indicating intrinsic characteristics independent of the initial flow are considered.

Consider the results presented in Figures 9 and 11. The selected eigenfrequencies

were shown to depend on both Reynolds number and downstream distance. Within a

given band, the eigenfrequency exhibited a weak monotonic increase with Reynolds

number, and a decrease with downstream position of the feedback probe. Nevertheless,

it was shown that the dependence on Reynolds number did not manifest itself in the form

of scaling with Strouhal number Ste (see Figure 12). This fact does not necessarily

imply that the temporal instability does not originate from the shear layer instability.

Clearly, the hydrodynamic part of the loop is not only the sole cause of non-linearity, but 0

also the origin of unsteadiness. These considerations imply that the temporal instability

of closed-loop fluctuations takes root in the stability characteristics of the shear layer.

On the other hand, our experiments documenting the insensitivity of self-sustained oscil-

lations to external disturbances have shown that the closed-loop system behaves in an

Sin
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intrinsic fashion. In particular, the final selected frequency appeared to be largely

independent of the initial spectral content of the jet. If the initial imprint of the jet has no

effect on the final, saturated stage, what is the role of flow characteristics in the observed

global instability?

Because of the absence of scaling with Ste, one may conclude that the feedback

instability is not purely a shear layer instability mechanism. The role of the initial shear

layer characteristics should not be excluded, however, as a possible explanation for both

frequency selection and initial seeding of the temporal instability. It is clear from the

above results that the hypothesis that the self-sustained oscillations with maximum tem-

poral amplification rate be the ones actually observed, can be used in conjunction with

equation (2) to obtain a criterion for frequency selection. In order to handle the -ai term

in numerical calculations, an approximate amplification curve was obtained using a

piecewise polynomial fit to the spatial amplification curve obtained according to inviscid

linear stability theory (Monkewitz and Huerre, 1982). The curve -ao = f(f E/Uj ) is used

in conjunction with the experimentally determined ®-dependence on Reynolds number,

to obtain: -a = X(f ,Re). Therefore, the function X is the dimensional expression

derived from the spatial amplification curve. Substituting in (17) yields:

* = In ("R) + XX (20)

In order to follow the temporal instability characteristics of a given eigenfrequency f,,

this equation has to be supplemented with the feedback constraint (2), assuming a con-

stant phase speed equal to half the jet velocity (a justified approximation, in view of pre-

vious results). Hence, for a given eigenvalue n, the eigenfrequency fn can be obtained

for every Reynolds number. The values of fn and Re can then be substituted in the spa-

tial growth rate equation. One can then substitute -ai in (17) to produce a, knowing r.

Conversely, the neutral stability curves Fc = f(n ,Re), can be calculated from equation
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(20), by setting the condition a = 0. The numrical implementation of equation (20) is

illustrated in Figure 34a (left), for two eigenvalues (n = 23 and n = 39), corresponding to 0

two of the most prevalent bands experimentally observed in Figure 9. These bands

correspond to the stages labeled "1960 Hz" and "3320 Hz" in these figures, and their

corresponding eigenvalues (n = 23 and n = 39) were obtained from the comparison pro-

duced in Figure 18. For this calculation, the receptivity term R was kept constant.

Again, it is believed that this hypothesis can be justified as a first approximation, on the

basis of the linear behavior observed in Figure 33. Also, the curves represented in Figure -

34a correspond to the boundaries of the "bands" that were experimentally observed (see

Figure 10). Each of these curves determines the boundary for stability: inside the band,

self-sustained fluctuations are observed (Y > 0) at the eigenfrequency f, whereas out-

side the band, they are exponentially damped. Quantitative agreement with Figure 10 is

not observed, however, since for larger values of F the experimental data reveal bands

apparently narrower than the calculated widths. This observation underlines the fact that

within a band, the feedback behavior is no longer governed by linear equations: finite

amplitude oscillations set in, and mode-competition becomes a crucial factor. Neverthe-
0

less, the previous agreement between theory and experiment at low gains is not fortui-

tous, since most of the predictions dealt with the onset of self-sustained oscillations (i.e.

behavior close to the critical gain).

Depending on whether one considers the stability properties associated with a

given eigenfrequency band or the global stability of the system, leads to different

definitions of the neutral stability curve. Figure 34b (center) depicts the band of stability

associated with the eigenvalue n = 23. Each line is a curve of constant temporal

amplification, and the narrowing of the band with increasing amplification rate is clearly

illustrated. On the other hand, if the global stability of the system as a whole is con-

sidered, regardless of the selected eigenfrequency, one must examine the most restrictive
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condition associated with the stability of each frequency (i.e. find the most unstable

eigenfrequency at each Reynolds number). Figure 34c (right) represents the lines of neu-

tral stability corresponding to the eigenvalues n = 15 through n = 50. The close proxim-

ity of the eigenfrequencies thus justifies the use of the third assumption, in the derivation

of equation (19), to describe the condition of global neutral stability.

Furthermore, the previous results may be used to approximate the location of fre-

quency jumps and to illustrate the possibility of hysteresis. These results show that at

any given Reynolds number there exists a most unstable eigenfrequency ideally given by

the condition: a ,Re) = 0.
an

In an experimental situation, if the gain is gradually increased at a fixed Reynolds

number, the eigenfrequency most likely to be observed is the one with the largest tem-

poral amplification rate (i.e. lowest critical gain). This hypothesis was substantiated by

the data of Figure 33, since the linear behavior is the consequence of the above assump-

tion. On the other hand, if the gain is fixed and the Reynolds number varied, successive

bands are crossed. For sufficiently weak gains, all disturbances are damped below a criti-

cal Reynolds nu-iber (see Figure 34c) As the Reynolds number increases, a first eigen-

frequency becomes unstable. As the band is crossed, this eigenfrequency becomes neu-

trally stable and eventually becomes damped for sufficiently large Reynolds number.

However, because of the overlap between adjacent bands, neighboring eigenfrequencies

compete with the initial one. This process is essentially analogous to a "bifurcation"

sequence. For Reynolds numbers slightly larger than critical, well-defined limit-cycle

behavior is observed, with an increasing number of potentially excited modes as the Rey-

nolds number is increased.

A simple minded hypothesis governing the frequency jump phenomenon can be

formulated by requiring that the location of the jump be determined according to the

crossing of two bands (i.e. requiring that jumps occur instantly, in such a way that a is
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maximized with r i',ect to n at any given Reynolds number). The application of this cri-

terion leads to a multitude of small steps in frequency as Re changes, owing to the prox-

imity of competing eigenfrequencies. Experimental observation, however, suggests that

the extent of the stages can be significant (see Figure 9). An additional objection to the

above scenario is the fact that it does not account for the frequency hysteresis

phenomenon.

In order to remedy this deficiency, the following assumption is made. Consider an

already established self-sustained oscillation at a given gain and given Reynolds number.

At the point of crossing of two competing bands (i.e. equal amplification rates), the esta-

blished wave has reached its saturation amplitude, and tends to inhibit the competing fre-

quency. Thus, a simple hypothesis is to consider that in order to overcome the saturated

amplitude of the existing oscillation, the new competing frequency must have an

amplification rate actually greater than that of the established wave, say by an amount

Aa. This criterion is schematically illustrated in Figure 35. It is clear that the introduc-

tion of a minimum Aa criterion to cvercome the existing frequency allows for hysteresis,

since irreversibility has been introduced in determining the points of switching between

bands. The numerical implementation of the above criterion was performed (Reisenthel,

1988) and compared to experimental data. It was found that a very minute

overamplification (Aa) is required to generate a noticeable amount of hysteresis. As

expected, both the magnitude of the jumps, and the amount of hysteresis (i.e. width of

stages) increase with AaT, although additional study would be required to analyze the

dependence of Aa on various flow parameters. Hence, the combined use of equations (2)

and (20) accounts for the existence of the observed bands in (Re,-) parameter space.

These equations govern dual aspects of the feedback problem: phase constraints on the

one hand, and global temporal instability on the other. Furthermore, the existence of 0

hysteresis and frequency jumps was qualitatively shown from simple hypotheses applied
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to the crossing of competing eigenfrequency bands.

Despite the qualitative agreement of these results with experimental observation, it

is clear that the regularity of the frequency jumps exhibited with the requirement of a

fixed overamplification Aa contrasts with the large irregular steps that were measured.

Figure 9, for example shows that regular stages were observed for the range of frequen-

cies 1900 Hz <f < 2300 Hz, but that a large jump occurs from 2250 Hz to 3280 Hz at

Re = 70,000. A similar abnormal jump is displayed by the hysteresis diagram of Figure

16. Qualitatively speaking, the experimental data suggests that some bands attract more

strongly than others. This feature is clearly not accounted for by the previous considera-

tions.

Although useful insight is gained from the predictions of Figures 34 and 35, it is

important to recognize the role of the two main assumptions that were made. The first

assumption was that the receptivity term R varied slowly with Reynolds number and fre-

quency, in comparison with e - s . The second assumption concerns the constancy of F.

It was shown earlier that the gain of the enhanced feedback loop is independent of ampli-

tude (aF/Wp" = 0). This does not imply, however, that in a practical situation the gain is

not a function of frequency (DF/Ico = 0). In order to extract physical insight from feed-

back equations (2) and (20), this assumption had to be implicitly made. We now con-

* sider its consequences separately, as a perturbation on the previously obtained "basic"

criterion for frequency selection.

Because care was taken to ensure that no non-linearities were introduced by the

electronic circuitry of the feedback loop, the frequency response of the acoustic branch

was investigated. The acoustic branch of the loop includes the speaker and the global

path of the sound, including possible reflections, etc. In order to perform this calibration,

* a white noise input was fed to the speaker. The output signal of a microphone placed

close to the lip of the jet (in the absence of flow) was recorded and Fourier analyzed.

0
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The transfer function between input and output signals determined the acoustic frequency
0

response of the system. It was found that the frequency response was independent of

forcing amplitude, which is consistent with the result r/rap' = 0. No simple analytical

expression for the acoustic transfer function could be used, however, since af/aco

depends, among other things, on the properties of the speaker and acoustical path.

Instead, the frequency response is shown as the top trace of Figure 36, shifted by an arbi-

trary amount for clarity. Large variations in the acoustic response are easily observed

with varying frequency. The effect of such imperfections on the amplitude response of

the shear layer is illustrated in Figure 36, which represents (from bottom to top) the

natural spectrum, the open-loop amplitude response of the shear layer to pure tone forc-

ing, and the acoustic transfer function of the system. The vertical dashed line indicates

the eigenfrequency selected by the feedback loop for Re = 61,600 and X/D = 0.17. Fig-

ure 36 clearly shows that the selected eigenfrequency (F = 2240 Hz) also corresponds to

the frequency maximally amplified by the shear layer. In addition, noticeable dips in the

acoustic frequency response are clearly correlated with corresponding dips in the shear

layer response. A similar correspondence was observed at other Reynolds numbers.

Reisenthel (1988) showed that the details of the acoustic transfer function can influence

the location of frequency jumps, by contributing to the isolation of "favorable" eigenfre-

quency ranges. Hence, apparently small variations in the acoustic frequency response i

can have important effects (such as incidental frequency jumps) on systems with pressure

feedback. This sensitivity is evidently a consequence of the relative flatness of the shear

layer amplification curve, and must be accounted for in the interpretation of experimental

data with varying frequency of excitation.

Thus, the proper criterion for frequency selection must include effective gain varia-

tions with respect to frequency. Therefore, at a given Reynolds number and in the -

absence of any hysteresis phenomena, the selected eigenfrequency should actually be that
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which maximizes the global quantity (In (F) - aoX + In (R)). In the limit of infinitely

close eigenfrequencies (i.e. large loop delays), this may be expressed symbolically by the

condition:

*1 DF Da 1 DR
X + 1- =R 0 (21)

IF ao aco R co

Finally, we examine the role of the receptivity term in equation (21). Thus far,

some light has been shed on the issue of frequency selection by the sole criterion of max-

imizing the spatial amplification rate -ai, under properly formulated eigenfrequency

constraints. It was also shown that discrepancies between experimental observation and

prediction of the eigenfrequency could be attributed to the shape of the global acoustic

transfer function (ar/w # 0). However, the above criteria relied on the assumption of a

constant receptivity R. This assumption was made for the sake of simplicity and in the

hope of extracting the principal mechanisms which characterize the enhanced feedback

phenomenon. Nevertheless, it may be concluded a posteriori that the predictive ability of

the previous criteria supports the conjecture: R-1 aR/D0 << -Dai /ao X.

Recalling the results of Figure 11, it is clear that the selected eigenfrequency has

an average tendency of lying between the frequency of maximum spatial amplification

(St8 = 0.163) and the frequency corresponding to the fundamental axisymmetric mode

(St8 = 0.132). It is argued that if the receptivity term were a constant, one would expect

instead that the stages be centered around the frequency of maximum spatial

amplification. This argument stems from the fact that apart from a few noticeable dips in

the acoustic transfer function, the term Dln T) should be zero "on the average". This

aco

means letting DR /aco = 0, averaging equation (21) over all frequencies (notation: < >),

and setting <I/FDF/Dco> = 0. The result (<act/ca> = 0) implies that on the average, the

value of the eigenfreluency should coincide with the frequency of maximum spatial
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amplification. This result is clearly contradicted by experimental observation. Thus, it is

suggested that the receptivity term is responsible for this discrepancy. In order to evalu-

ate the validity of this hypothesis, we consider Bechert's (1982) theoretical work in the

limit of plane, parallel, inviscid, incompressible flow and infinitely thin shear layer.

Bechert's results suggest that for a fixed freestream velocity, (transposing to current nota-

tion) R should be proportional to o -fA. If we now make the assumption that the range of

validity of this result may be extented to the case of finite Reynolds number, finite

momentum thickness, and moderate Strouhal numbers, the relation:

Dln(R) = __I_ 1 (22)

aco 2 o

may be substituted in equation (21), where y is a positive constant, presumably dependent

upon Reynolds number and geometry. The main point of equation (22) is that

a In (R)/Do is always negative. Therefore, even in the averaged sense considered previ-

ously (i.e. < Dn (n) > = 0), the frequency corresponding to maximum spatial

ac)

amplification cannot satisfy the frequency selection criterion expressed in (21). In partic-

ular, assuming a perfectly flat acoustic transfer function (aI/aco = 0) for simplicity, the

aaj aln(R)
frequency sele-tion criterion: --- X + =o 0 implies that: -- c/aco > 0. There-

.ore, since Dact i/ac = 0 corresponds to a maximum in the linear amplification curve, it is

clear that the selected eigenfrequency should be "on the average" lower than the fre-

quency with maximum spatial amplification. The term "on the average" is used in order

to eliminate pseudo-random contamination caused by the acoustic transfer function, but

also to put aside considerations of frequency hysteresis.

In summary, the present data agree well with the predicted scaling of the critical

gain with X and with Reynolds number. Moreover, a properly expressed criterion based

on the maximization of the temporal amplification rate has been suggested. This
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criterion was complemented with the knowledge of the acoustic frequency response of

the system to yield quantitative agreement between prediction and experiment. Finally,

the correction suggested from the application of Bechert's (1982) calculations is found to

be consistent with the trends experimentally observed.

6.2 Hybrid instability

Two apparently contradicting properties are associated with the stability characteristics

of closed-loop fluctuations with enhanced feedback. The first one is the fact that under

given feedback conditions, the frequency of the jet appears to be an intrinsic characteris-

tic. Measurements demonstrating the presence of frequency bands and the insensitivity

to external disturbances support the argument of a global instability. In order to validate

this conjecture, direct measurements of temporal growth rates were made. It was shown

that the amplitude of the selected eigenfrequency (which depends on shear layer charac-

teristics) grows "in place", and that the associated temporal amplification rate is not a

function of space. It would be tempting to conclude to an absolute instability of the flow,

based on the sole consideration of the above symptoms. However, the concept of abso-

lute instability is a local one, and concerns vortical waves with zero group velocity

(Bechert, 1985). It was shown unequivocally that the feedback instability does not scale

on local momentum thickness, but scales instead with an array of mixed terms associated

with both the feedback loop itself, and the spatial stability characteristics of the shear

layer. From the scaling experiments, the role of the shear layer was clearly assessed as a

"vehicle" for selective amplification of disturbances, rather than the origin of the instabil-

ity. Unmistakably, the role of the initial shear layer fluctuations as a seed for the global

instability should also be appreciated. Furthermore, the overall agreement of analysis

(which was based solely on monochromatic waves with positive group velocity) and

experimental observation suggests that the present phenomenon is a global instability
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through pressure feedback. In other words, the present enhanced feedback experiment

falls under the category of "hydroacoustic" flow resonances (Huerre, 1987). 0

Similarly to the natural jet, the instability waves in the enhanced feedback

configuration maintain their convective character. Hence, the frequency selectivity and

apparent insensitivity to external disturbances are the consequence of the closed feedback

loop. The usual broadband amplification characteristics of open flow systems apply

locally, but one must consider the conditions under which a disturbance is "allowed" to

self-sustain. In effect, all modes picked up by the sensor are fed back to the lip and are

subsequently amplified or damped by the shear layer, but only a discrete number of them

satisfy the proper criteria leading to large amplitudes integrated over time. The obtain-

ment of pure limit cycle behavior has been recognized as a precondition to the

identification of bifurcation sequences and possible routes to chaos in fluid flows. Conse-

quently, much attention in recent years has naturally been directed toward absolutely

unstable flows, such as in the near wake of bluff bodies and variable density jets

(Sreenivasan et al., 1987), for which resonances may be initiated by purely hydro-

dynamic means. A major difficulty associated with the study of such flows, however,

arises from the necessary exclusion of intrusive measurement techniques. As pointed out

by Huerre (1987), such may also be the case for convectively unstable flows with

hydroacoustic resonances caused by the presence of a downstream body. The enhanced

feedback configuration described in the present manuscript, however, does not require

the presence of a downstream body, so that disturbances introduced by the presence of

the hot-wire probe are convected downstream without consequence on the global insta- 0

bility.

The high degree of similarity between open-loop forcing on the one hand and feed-

back excitation on the other was also demonstrated for steady-state conditions of 0

matched frequency and amplitudes (i.e. rms levels). This similarity was argued on the
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basis of both mean centerline decay measurements and spectral measurements close to

the lip (Reisenhel, 1988). Given the constraints imposed by feedback, it is natural to ask

oneself what differentiates these two modes of excitation, if the local instability proper-

ties are unchanged. In order to compare open-loop forcing to excitation via feedback,

Reisenthel (1988) also estimated equivalent temporal growth rates for the case of on/off

excitation. In this configuration, an electronic switch was closed to produced the sudden

open-loop harmonic excitation of the jet. The amplitude growth was recorded and pro-

cessed for a variety of frequencies and amplitudes. It was found that the equivalent

growth rates obtained by open-loop forcing were frequently two orders of magnitude

larger than the corresponding amplification rates associated with feedback, and that these

growth rates were not correlated with the sound pressure level of the excitation. While

the temporal amplification of fed back disturbances reflects the global instability

phenomenon, the step-like amplitude growth generated by transient external forcing, on

the other hand, corresponds to the initial wave front convecting past a stationary probe.

Further evidence that the jet remains locally convectively unstable under enhanced

feedback conditions is given by phase speed measurements. It was shown that the meas-

ured phase speeds were constant and approximately equal to half the jet velocity. In par-

ticular, the phase speeds calculated from closed-loop feedback excitation and by transient

forcing differed by less than two percent. The top graph of Figure 37 shows the meas-

ured normalized phase speed, C/Uj, of the eigenfrequency at all three Reynolds numbers

investigated herein. These phase speeds were calculated from cross-spectral analysis

between two velocity probes placed at various downstream locations. In contrast, an

inferred propagation speed, C, of the amplitude envelope is presented in the lower graph

of Figure 37. The convection speed was calculated in the following way. Recalling the

*In (r/F
expression for the temporal amplification rate: a = , one obtains from the least

st
squares fits of a versus in (r") a value for Fc, but also an estimate of the total loop delay
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,r. Knowing the acoustic delay ta and the probe position X, it is possible to obtain the

inferred hydrodynamic delay th = t - ta, and an equivalent normalized convection -

speed:

1 X (23)
Ui "C - T~a

A very puzzling result is the fact that appears to be an order of magnitude smaller than

C/Uj. Many rigorous verifications were performed to ensure tl.", the values of Fc and t

were being properly calculated. The uncertainty bars shown in Figure 37 are obtained

from the mean square error of the fit and represent confidence intervals on . Within

experimental error, C remains independent of Reynolds number ( = 0.035). It is conjec-

tured that a possible explanation for this discrepancy may lie in a time delay associated

with the transient receptivity for finite Reynolds numbers and finite shear layer thickness.

This delay would have to be comparable to the convection time of the spatial instability

over a few wave lengths to adequately confirm the explanation. The similar trend of

scatter between the values of C /lUj and C is consistent with this explanation. It is impor-

tant to appreciate that C does not represent the actual local phase speed of the instability

wave, but an equivalent propagation speed at which the amplitude information is com-

municated downstream of the lip. It is also most interesting to realize that this informa-

tion therefore does not travel with the self-sustained oscillation, as might be intuitively

expected. Indeed, the distinction between the dynamics of the hydrodynamic instability

wave (0o, C, --c i) and the temporal growth of its amplitude (characterized by F, X, -ai
0

and C) is a key factor in the representation of the feedback instability. On the one hand,

the hydrodynamic instability wave has a local phase speed approximately equal to half

the jet velocity, and phase changes across the shear layer that are typical of the usual

Kelvin-Helmholtz instabilities. On the other hand, the temporal amplification of the

amplitude is the result of a global instability. This global instability was shown to have a
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time scale several orders of magnitude larger than the period of the wave itself. These

two components of the enhanced feedback qualify the instability of the present jet

configuration as being "hybrid", in the sense that it appears to be a temporal instability

with respect to global amplitude, but a spatial instability with respect to local shear layer

dynamics.

6.3 Relation to other self-sustained oscillations

The concept of critical gain is now examined in relation to previous experiments. In par-

ticular, it has been reported in the literature (see for example Rockwell and Naudascher,

1979) that in most shear layer tone and edge tone experiments, there exists a minimum

(threshold) distance between the edge (or point of impingement) and the point of separa-

tion, in order for self-sustained oscillations to make their appearance. In the present

experiment, the equivalent of the edge location is the feedback position X. We have

shown that under quite general conditions the gain had to satisfy the following inequal-

ity:

1 > (24)
R

in order to obtain self-sustained oscillations. This expression determines a threshold

value Xm - in (FR) Conversely, for a fixed distance between points of separation
TlRe 1

and feedback, it is a common observation that there is a threshold in Reynolds number,

e.g., "ringing" is only observed above a critical velocity. In particular, similar observa-

tions pertain to the problem of the "singing plate" (see Nagib et al., 1975), where a criti-

cal Reynolds number remained unexplained in a supposedly convectively unstable flow.

Some similarity to the near wake problem (see Huerre, 1987) may exist in this flow made

of a multiple array of jets. For given feedback conditions, the Reynolds number
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threshold is expressed by the inequality:

Re> [ln R )]X 2 (25)

Sarohia (1977) considered the tones generated by an axisymmetric cavity, and found that

for fixed upstream conditions:

Xmin.N"Re = constant (26)

This result is evidently analogous to equations (24) and (25). Equation (26) simply

reflects the fact that an amplitude thresnold must be reached by the location of feedback,

and that this amplitude is the result of linear spatial amplification (-czi max = r0R) over

a distance X. Clearly, much work remains to be done on the modeling of the effective

gain F in flows with naturally occurring pressure feedback. Nevertheless, it may be

inferred by analogy with equations (24) and (25), that the product (FR) was approxi-

mately constant in the case of Sarohia's experiment.

An elegant analysis of feedback was given by Powell (1961), who used a control-

system type approach to describe the edge tone phenomenon. Powell claimed that a con-

dition of unity gain around the loop had to be satisfied to obtain steady-state self-

sustained oscillations. From this criterion, amplitude and phase constraints were derived,

similar to the dual aspects expressed by equations (1) and (3) of the present manuscript.

In the present work, most of Powell's results have been qualitatively recovered using first

return map arguments. This simple approach was inspired by the study of dynamical sys-

tems (see for example Mees, 1986), and in addition gave physical insight into the tran-

sient temporal growth of disturbances. Also, the role of the spatial stability characteris-

tics of the shear layer as a vehicle for the amplification of disturbances has been clearly

demonstrated.

The present study provides a general frame of work which relates the notion of
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"critical gain" to the instability characteristics of the shear layer in a simple fashion.

Moreover, the introduction of a controllable gain provides the added dimension that

allows us to unify the results of various tone experiments. Fundamental differences were

claimed, for instance, between the shear layer tone (or probe feedback) and the edgetone

phenomena (see Hussain and Zaman, 1978), partly on the basis of the absence of hys-

teresis in the former. In light of the present findings, the two phenomena fall under the

same category of flow systems which may support self-sustained oscillations, due to

pressure feedback. It is conjectured that the qualitative differences between tone experi-

ments are largely attributable to differences in their effective gains, which must include

receptivity considerations. For example, it was shown that as the gain was increased, the

width of the eigenfrequency bands increased, causing hysteretic behavior past the point

of crossing of competing bands. Clearly, the effective gain associated with natural feed-

back experiments is more difficult to quantify than in the explicitly controlled feedback

configuration developed in this study. However, it may be inferred from the literature

(Rockwell and Naudascher, 1979, and Hussain and Zaman, 1978) that the higher effec-

tive gains appear to be associated with the more symmetric configurations, such as flow

over axisymmetric cavities, and hole tones.

it is believed that focusing on the notions of gain and "critical gain" should help

future modeling of the feedback process. Such modeling, complemented with an

increased understanding of the receptivity problem would lead to significant progress in

the prediction of open flows with pressure feedback, including turbulent flows.

Reisenthel (1988) established that in presence of mild probe feedback, the dimensionality

of attractors, reconstructed from long time series of the velocity signal at a given point in

space, indicate an increase in both the dimension and the sensitivity to initial conditions,

with downstream distance. In addition, low-level axisymmetric acoustic forcing was

found to reduce the dimension by approximately one. Although these findings are in
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good agreement with our physical understanding of the present well-documented jet (see

Nagib et al., 1989), it is conjectured that the loss of phase reference in an open flow may

have precluded further characterization, i.e. deviation from periodic behavior. In the

presence of enhanced feedback, however, strong temporally developing disturbances

dominate the flowfield, past a critical value of the Reynolds number. Therefore, it is

anticipated that the jet in the enhanced feedback configuration may circumvent some of

the previous difficulties encountered in open flows, and provide us with the opportunity

to test the dynamical systems approach as a tool to analyze empirical findings.

7. Conclusions

The role of feedback in a convectively unstable axisymmetric jet has been experi-

mentally investigated using a controlled means of enhanced self-excitation. It was found

that under general conditions, the upstream propagation of pressure fluctuations and their

coupling with the initial shear-layer instability spontaneously produced strong self-

sustained oscillations past critical conditions. This special open flow configuration was

investigated with an eye towards the potential use of dynamical systems in transition and

turbulence.

These self-excited, highly organized instabilities were found to share many of the

qualitative features exhibited by a broad class of hydroacoustic phenomena. Because of

the controlled conditions of the experiment, thresholding effects based on velocity and S

streamwise flow scale were related to the existence of a critical gain. Furthermore, using

the concept of "hybrid" instability, we explained the origin of a critical Reynolds number

in feedback or resonant systems. Model phenomenological equations utilizing linear sta- S

bility theory were used to describe in detail the dynamics of feedback and many of its
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nonlinear consequences. This dual empirical and analytical approach allowed us to

explain the observed frequencies and their inter-relation in more complete and rigorous

ways than in previous studies. The present data agree well with the predicted scaling of

the critical gain with downstream position of the source of feedback and with Reynolds

number. Specifically, it was demonstrated that frequency stages are embedded within a

band structure. The width of these attracting bands and their possible overlap was deter-

mined to bear close ties with phenomena of intermittent switching and hysteresis

between competing eigenfrequencies. Clear evidence was presented that these effects

should be viewed as being part of a unified structure controlled by the overall gain of the

feedback loop, including receptivity.

Most importantly, the exponential amplification or decay of self-sustained oscilla-

tions close to criticality was shown to be governed by a global temporal instability. This

instability has a time scale several orders of magnitude larger than the period of the oscil-

lation itself. The growth rates at the onset of resonance were measured experimentally

and found to be independent of space. These global intrinsically driven oscillations were

found to be insensitive to external disturbances for a substantial range of forcing levels

and initial conditions, although all indications were that the flow remained locally con-

vectively unstable. The role of the shear layer as a vehicle for the amplification of distur-

bances within the feedback loop was clearly established by connecting temporal growth

rates of the global instability with the linear spatial amplification rates of the initial shear

layer. These two components of the enhanced feedback effect qualify the instability as

being "hybrid", in the sense that it is temporal with respect to the global amplitude of

oscillations, but convective with respect to local shear layer dynamics.

By considering issues of frequency competition based on the temporal growth rates

of global oscillations, an explanation was proposed for the frequency selection process in

a closed-loop configuration, and for the observed frequency hysteresis. It was also
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shown experimentally that, for Reynolds numbers slightly larger than critical, well-

defined limit-cycle behavior is observed, with an increasing number of potentially

excited modes of oscillation as the Reynolds number is increased. The related existence

of a critical streamwise flow scale for the appearance of self-sustained oscillations in

various "tone" experiments was also established. Greater insight into the role of recep-

tivity in feedback systems has been gained through the examination of related frequency

selection criteria. Finally, it is believed that the present measurements of receptivity con-

stitute a wealth of new results that pertain to the excitation of free shear layers, under

both steady-state and transient conditions. Comparison with theoretical estimates based

on the application of linear stability theory revealed that while the location and magni-

tude of frequency jumps only agreed in a qualitative sense, excellent agreement was

found in predicting the onset of oscillations.
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Abstract

This paper presents experimental results of the nonlinear phase

locking present in the resonant growth of unstable modes in the shear

layer of an axisymmetric jet. The initial instability modes scale with

the exiting shear layer and grow convectively with downstream distance.

Because of the special condition at the exit lip of the jet, the initial

growth of modes is very sensitive to local unsteady pressure fields. A

part of the unsteady field is stochastic in nature. To a larger extent,

the pressure field at the lip of the jet contains the imprint of the

downstream developing instability modes, in particular the first

unstable axisymmetric mode and its subharmonic. These are felt at the

lip of the jet as a result of the energetic processes of the first

vortex roll-up and vortex pairing. As a result, a resonant feedback

exists which under special conditions makes the initial region of this

flow in some sense absolutely unstable. The features of this process are

brought out by the normalized cross-bispectrum or cross-bicoherence

between the instantaneous unsteady pressure at the lip of the jet and

velocity time series measured at the same azimuthal position for

different downstream locations. These give a measure of the nonlinear

phase locking between the principle modes and their sum and difference

modes. Analysis of these show a perfect nonlinear phase locking at the
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fundamental axisymmetric and subharmonic frequencies between the

pressure field at the lip and the velocity field at the downstream

locations corresponding to the energy saturations of the fundamental and

subharmonic modes. This resonance process can be suppressed or enhanced

by low amplitude axisymmetric mode forcing at the natural preferred

frequency or slightly detuned cases. Contrasted with this is the

behavior of the fundamental m - + 1 helical mode. This mode was found

to have the same spatial growth rate as the axisymmetric mode and a

streamwise frequency approximately 20 percent higher, in agreement with

theoretical predictions. However, short-time spectral estimates showed

that these two fundamental modes do not exist at the same time or space.

This suggests that each is a basin of attraction which suppresses the

existence of the other. The apparent nondeterministic switching

observed between these modes is likely the result of the response of the

jet to stochastic input of axisymmetric or nonaxisymmetric disturbances.

This scenario may lead to a low dimensional temporal model based on the

interaction between these two modes which captures most of the early

random nature seen in our experiments.

I. Axisymmetric Jet

I.1 Introduction

For many years investigations have been conducted to understand the

flow processes which occur in jets. One practical purpose of these was

to determine the relationship between the observed characteristic

velocity fluctuations in the jet and the generation of measured

far-field acoustic disturbances associated with these flows. Previous
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investigations in naturally and artificially excited jets have

determined the importance of two instability length scales: one

associated with the initial shear layer thickness at the exit of the

nzzle, and the other associated with the jet diameter which governs the

shape of the mean velocity profile at the end of the potential core.

The instability modes in the first region develop through continuous and

gradual frequency and phase adjustments to produce a smooth merging with

the second region. This process makes this problem fundamentally

interesting, and for that reason it has received a great deal of

attention. A more recent excellent review of free-shear flows of the

type discussed here was given by Ho and Huerre (1984). As a result,

only a short review of past related work is presented here in order to

help to focus on the singular characteristic of resonant axisymmetric

mode phase locking that can exist in these flows.

1.2 Background

The shear layer development just past the exit edge of a jet is

initially dominated by a linear instability mechanism. The vorticity

distribution is inviscidly unstable to small perturbations through a

Kelvin-Helmholtz instability mechanism. These instability waves grow

exponentially with streamwise distance, and when finite amplitudes are

reached, roll up into discreet vortices.

In experiments in low disturbance axisymmetric jet flows, a

majority of emphasis has been placed on the growth of axisymmetric

disturbances in the close vicinity of the nozzle exit. The analysis of

Michalke (1971) however, pointed out that the first helical mode has

amplification characteristics in this region which are nearly identical

to those of the fundamental axisymmetric mode. His analyris further
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suggests that as the shear layer thickens or grows, the amplification of

the helical mode becomes more dominant over the axisymmetric mode.

Mattingly and Chang (1974) performed similar analysis with a different

prescribed mean velocity distribution that showed that the amplification

of the axisymmetric mode was only approximately 12 percent larger than

that for the helical mode, and that the streamwise frequency of the most

amplified helical disturbance in that case was approximately 20 percent

higher than that of the most amplified axisymmetric mode. Drubka (1981)

experimentally verified these results from cross-spectral and azimuthal

phase measurements between velocity fluctuations in the shear layer and

pressure fluctuations at the lip of a very low disturbance axisymmetric

jet flow.

The fact that the growth of the subharmonic of the initial

axisymmetric mode leads to the downstream pairing of neighboring

vortices is now well established. In a two-dimensional mixing layer,

Winant and Browand (1974) concluded that the successive pairing of

neighboring vortices was a primary mechanism for the streamwise growth

of the shear layer. In a more recent experiment, Ho and Huang (1982)

documented for a harmonically forced mixing layer that the first few

pairings were accompanied by an approximate doubling of the shear layer

momentum thickness. This observation points to the potential importance

of this fundamental process in jet mixing and spreading.

Focusing on the growth of subharmonic disturbances, Kelly (1967),

in a linear temporal formulation, determined that when the amplitude of

a fundamental instability wave reaches a finite value in the presence of

a subharmonic wave, another instability mechanism based on a subharmonic

resonance can arise. This mechanism requires that both waves have the
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same phase speed. This subharmonic resonance is weakly nonlinear and

described by the Mathieu equation.

As the initially linear instability grows in amplitude toward a

finite value, the shear layer begins to roll up to form discrete

vortices. At this point the problem is fully nonlinear and is therefore

past the range of validity of the linear model, such as for Kelly

(1967). Pierrhumbert (1980) examined the effect of this nonlinearity on

the subharmonic resonance. His results predicted that the nonlinearity

associated with the rolled-up vortices enhances the growth of the

subharmonic instability. The growth of the subharmonic mode is

important in the sense of describing the mechanism for the pairing of

ring vortices observed in an early experiment by Wille (1963).

Bruun (1977), Peterson (1978), Hussain and Clark (1981) and Laufer

and Zhang (1983), among others, documented the effect of pairing on the

growth of axisymmetric jets. Acton (1980) modeled discrete vortex ring

elements and computationally followed the development of the instability

wave into eddies, with and without forcing. Reasonable agreement was

observed between this axisymmetric model and the experiments; thereby

drawing the speculation that the large-scale structures in the jet are

essentially axisymmetric. Ho (1981) based his subharmonic evolution

model on this assumption.

External harmonic forcing of the jet has been used by many

investigators to organize the streamwise location where the shear layer

first rolls up as well as the pairing location. This forcing has

invariably been large amplitude and axisymmetric. Kibens (1979) showed

that when the initial instability frequency is related to the final

"preferred" jet instability frequency by an integer power of two, the
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jet becomes organized, vortex pairings were localized and the

development of the initial shear layer frequency towards the final

preferred jet frequency occurs through an integer number of pairings.

Although this was first observed in an externLlly excited jet, Drubka

(1981) documented the same phenomenon for his "low" disturbance

unexcited condition at a Reynolds number of 42,000. At this condition,

Drubka (1981) also noted the greatest amount of pressure fluctuations at

the lip at a frequency corresponding to the subharmonic of the

axisymmetric mode. From these results, he suggested a natural

self-excitation for this organized pairing state.

Although the exact mechanism of pairing is not completely

understood, a number of physical observations associated with this

process have been made. When the initial axisymmetric subharmonic mode

grows to a certain high amplitude, a secondary instability, the

subharmonic resonance, develops. Drubka (1981) reported that during

resonance the subharmonic wave attains the same phase speed as the

fundamental wave. This occurs after approximatelv two fundamental

wavelengths. Beyond this point, the amplitude of the subharmonic mode

increases to grow beyond that of the fundamental and vortex pairing is

observed to occur. This point of pairing closely corresponds to the

amplitude maximum of the subharmonic mode as shown by Ho and Huang

(1982).

The vortex rollup and pairing are not generally expected to occur

at a fixed streamwise location. Owing to the doubling in momentum

thickness measured by Ho and Huang (1982) at pairing, such behavior

would result in a stepwise growth of the shear layer. However, Laufer

and Zhang (1983) explained that in general the location of the pairing



118

moves randomly in time and space which results on the average, in a

smooth spreading rate.

Sarohia and Massier (1978) showed that a significant part of the

pressure signal in the near field of a jet was generated by the pairing

interaction and merging process. Laufer and Zhang (1983) suggest that

the induced perturbations at the nozzle exit are the volume integral

effect of all the fluctuations existing in the flow, with the largest

contribution coming from the subharmonic fluctuation at the pairing

location. These pressure fluctuations induced by the unsteady flow

downstream can set up an unsteady Kutta condition at the sharp trailing

lip of the jet. This phenomenon and the fact that acoustic forcing

further organizes the jet suggest that the fluctuations caused by the

merging vorticies propagate upstream and create a strong feedback loop

mechanism in the jet. Ho and Huang (1982) state that the location of

the vortex merging can be predicted from the feedback loop evolution.

This prediction is made by requiring the number of waves in the feedback

loop to be an exact integer.

The organization of the jet flow and feedback accompanying pairing

makes it a likely mechanism for acoustic wave generation. Ffowcs

Williams and Kempton (1978) from their numerical calculations suggested

that the pairing of eddies is the primary mechanism for the production

of noise. Since the location of pairing can vary over a distance

comparable to one eddy separation, the radiated sound is broadband.

Sarohia and Massier (1978) add that the merging process has a

statistical distribution of length and life span, so that it is quite

probable that the emitted jet noise can appear to be broadband. Kibens

(1979) observed, however, that in a forced jet, the resulting increase
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in noise consisted of tones at the subharmonics of the excitation

* frequency, which was accompanied by a reduction of the broadband noise.

1.3 Objectives

The object of this study was to further document the relation

between the axisymmetric fundamental and subharmonic modes by following

their development and interaction in the velocity field from the lip of

the jet to beyond the point of vortex pairing. We hoped to identify the

role of the feedback in this process and to locate the region of the

maximum shear layer influence. Furthermore, we intended to document the

interactions between these and other instability modes, including

non-axisymmetric (helical) modes leading to the appearance of other

multiple-interaction modes. Such information, we felt, would be

necessary to point to efficient and predictable means of controlling

these jet flows.

Two Reynolds numbers were examined, one being Drubka's Re-42,000

case at which a natural coupling existed between the initial and final

jet instability frequencies and, as a contrast, one at which no special

coupling existed. The effect of initial conditions on these jets were

examined by increasing the broad spectrum turbulence intensity within

the jet core and by very low amplitude narrow-band external acoustic

forcing. The forcing was intended to favor axisymmetric modes. A level

of the forcing was chosen to be comparable to the levels in the natural

feedback so as to mutually enhance or compete with that mechanism.

0

II. Experimental Setup

As in the case of Drubka (1981), this study was conducted in the

0
IIT Jet Facility. A detailed description of that facility and the

0



120

characteristics of the jet flow are contained in that reference and will

not be presented here. Benchmarking measurements, documented in the

thesis by Shakib (1984), were taken to confirm that the flow conditions

were the same as for that previous work.

Two of Drubka's flow cases were used in this study. The first of

these was his lowest initial disturbance condition (u'/Uj - 0.05%)

designated IL, and the other being his highest initial disturbance jet

condition (u'/Uj -0.16%) designated 3L. A scale drawing of the exit face

of the nozzel is shown at the top of Figure 1. The exit diameter of the

jet in this figure is 5.14 cm. As shown in this drawing, eight

azimuthal pressure taps provide sites for measuring the unsteady

pressure field near the separation point at the jet lip.

The data consisted of simultaneously acquired time series of the

unsteady pressures at the lip of the jet, and the streamwise velocity

fluctuations measured at different spatial locations in the shear layer,

up to approximately one diameter downstream. The velocity samples were

always taken at the same azimuthal position as the sampled pressure

port. This arrangement is schematized at the bottom of Figure 1. A

voltage proportional to pressure was obtained from a B&K Type 2209

Precision Sound Level Meter which provided a flat amplitude response up

to approximately 4000 Hz. A hot-wire powered by a DISA 55D01 constant

temperature anemometer provided a voltage related to the streamwise

velocity component. These analog voltages were DC biased and amplified

before being digitally sampled and stored on digital magnetic tape.

iS
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For the forced jet cases, an upstream-oriented acoustic speaker was

placed 4m downstream on the jet centerline. Pure tone oscillations of

the speaker were driven by a B&K 1022 Beat Frequency Oscillator. The

frequency and amplitude of the forcing sound was set while monitoring

the unsteady pressures at the lip using an HP 3582A Real-Time Spectrum

Analyzer. This was done with and without flow. The amplitude of the

forcing was approximately 0.05% of the dynamic head based on the jet

core velocity.

Post processing first consisted of digitally calibrating the

pressure and velocity data series. For the case of the velocity data, a

fourth order polynomial was used to linearize the anemometer output.

Other processing generally involved calculating the mean and rms of the

fluctuating quantities, the auto-and cross-spectra and coherence based

on long and short time segments using Fast Fourier Transforms and

Maximum Entropy Spectral Estimations, respectively, and the auto- and

cross-bicoherence. Greater details on the more specialized statistical

techniques are presented in the following sections.

III. Mode Energy Distributions

0 This section documents the streamwise development and the radial

dependency of the instability eigenmodes in the initial shear layer of

the circular jet. These results encompass the region starting from the

op lip of the jet, downstream through the first pairing location, and

radially across the shear layer. For the dominant instability modes,

the modulus of the eigenmodes were calculated from the spectral

amplitude of the streamwise velocity fluctuations. The phase of the

eigenmodes were determined from the pressure-velocity cross-spectrum.
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The phase measurements were relevant since the linear coherence between

the velocity fluctuations in the near-field region of the shear layer

and the pressure fluctuations at the lip of jet exhibited were high

valued for the principle instability modes.

The bulk of the results are presented as two-dimensional contour

plots, with x-axis representing the streamwise direction, starting from

x/D - 0.05, and the y-axis representing the radial direction normalized

by either the jet diameter or the local momentum thickness. The contour

plots are oriented to show the core of the jet on the top of the plot

and the ambient field on the bottom. In order to better obtain a

continuous spatial distribution of the plotted quantities, the discrete

value points were spline fit first in the radial direction and next in

the streamwise direction. A very low damping coefficient was used in

the spline fit in order to not alter the actual data values. The

constant level contour plots were generated from these spline function

fits.

III.1 Jet Mean Characteristics

The two-dimensional contour mapping of the local mean velocity

normalized by the jet exit velocity for the low initial disturbance

level, IL case, at Re - 42,000 is shown with a physical radial

coordinate in Figure 2a. It is apparent from this figure that upstream

of x/D - 0.30, the shear layer is seen to barely spread from its initial

thickness. The first significant growth of the shear layer thickness

occurs at approximately x/D - 0.40. The rate of spreading further

increases at approximately x/D - 0.60. We will verify later that these

positions correspond respectively to the points of energy saturation of

the fundamental and subharmonic axisymmetric modes. We expect that
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these x-locations should also coincide with the points of first vortex

roll-up and vortex pairing and, that the local changes in the shear

layer growth are attributable to these energetic motions.

The iso-mean velocity lines in 2a are reproduced in 2b with the

radial coordinate now normalized by the local momentum thickness, e(x).

This demonstrates that self similar mean flow behavior exists, even

well past the point of pairing in this jet.

For the same jet condition, the two-dimensional contour mapping of

the total rms of the streamwise velocity fluctuations normalized by the

jet exit velocity is shown in 2c. The radial coordinate is again

normalized by O(x). The rms values are plotted on a logarithmic scale

in order to highlight regions of exponential growth.

111.2 Dominant Eigenmodes

The radial spread of the power spectra of streamwise velocity

fluctuations for this case at four downstream locations are shown in the

contour plots of Figure 3. The amplitude of the spectra are plotted on

a logarithmic scale with 5 db difference between the contour levels. To

easily differentiate the amplitude levels, the six highest levels are

plotted in solid lines and the next five levels in dashed lines. From

this and similar plots the dominant instability and interacted modes are

identified. The fundamental axisymmetric mode, designated fop occurs at

880 Hz. Although not as apparent in this presentation, the other

fundamental mode for this Reynolds number jet occurs at 1050 Hz and

corresponds to the m+l helical mode. This frequency is designated fl.

The other spectral peaks correspond to sum and difference modes derived

from the initial fundamental modes. These include f0/2, f1 -f0,

2f0 /2-f1 , f1 -f0 /2, 2fo-fl and fo/4.
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We focus on the fundamental axisymmetric and subharmonic modes in

Figure 4. These show iso-energy lines in the (x,r) directions, within

the shear layer, of u-component fluctuations associated with each mode.

This figure and and others like it were constructed from the energy in

spectral peaks at particular mode frequencies at the different sampled

(x,r)-locations. Each mode was defined to fall within a frequency

centered bandwidth of 54 Hz (±27 Hz) which corresponded to 11 points in

the spectrum for data acquired at 2500 Hz. Within the frequency

bandwidth of a mode, the amplitude and phase were determined at the

frequency having the maximum spectral amplitude. The velocity power

spectrum at each probe position were closely examined to verify the

existence of a spectral peak for each of the primary modes. From these

resalts the regions where spectral peaks existed were identified. On

such spatial maps of spectral amplitude, boundaries are plotted as thick

solid lines each next to a dotted line pointing to the region where no

distinguishable peaks were observed. The contour levels in these plots

are in logarithmic, dB, increments so that equally spaced contours

denote regions of exponential growth.

In the spectral map of the fundamental axisymmetric mode, Figure

4a, the streamwise spacing between adjacent constant spectral amplitude 5

lines is invariant from x/D - 0.15 to 0.40, marking the linear

exponential growth region. Within this x/D, in the region

-0.6 < (r.5-r)/29 < 0.6, the contour spacing is relatively invariant 5

with radial direction. This radial extent corresponds to a range of

normalized mean velocity, U/Us from 0.3 to 0.8, seen from Figure 2b. The

amplitude of the fundamental mode reaches a maximum at x/D - 0.45. This

is observed to occur on the core side of the shear layer. Beyond the
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pairing location, at about x/D - 0.60, the amplitude of this mode

decreases slowly until it no longer exhibits a spectral peak, as

indicated by the solid-dotted line boundary beyond approximately

x/D - 0.7.

The spectral map of the subharmonic mode for this flow condition is

shown in Figure 4b. Examination of this figure shows two regions of

constant exponential growth from approximately x/D - 0.10 to 0.25 and

from x/D - 0.25 to 0.50. Again in the middle portion of the shear

layer, -1.0 < (r. 5-5)/20 < 1.0, the contour spacing in the flow

direction is nearly invariant with radial direction. The maximum energy

of the subharmonic mode occurs at x/D - 0.60. This maximum occurs

slightly closer to the centerline of the shear layer than for the

fundamental mode maximum.

The eigenfunction moduli for the fundamental axisymmetric and

subharmonic modes were extracted from the spectral amplitude spatial

maps such as these. This amounted to taking cuts along constant x/D

lines to generate the mode shapes shown in Figures 5 and 6. In an

effort to collapse these curves, the spectral amplitude u'f(x,r) was

normalized by the square root of the total radial-integral energy at the

mode frequency at that streamwise location. Two criteria were set in

representing the eigenfunction. First, the eigenfunctions were defined

only at streamwise locations where spectral peaks were observed, through

the middle region of the shear layer. Second, the mode was to be

undergoing exponential streamwise growth, based on values taken along

the mode's maximum amplitude line. In the case of the subharmonic and

difference modes, two regions of exponential growth were identified. The

eigenfunctions in both these regions were Included. The second region is
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marked in the legend by an asterisk next to its streamwise x/D location.

Based on the above criteria, the eigenfunction moduli of the

fundamental axisymmetric and subharmonic modes are shown in the top half

of these figures. The corresponding eigenfunction phase distributions

are presented at the bottom part. In the central region of the shear

layer in Figure 5, the fundamental eigenfunction moduli are reasonably

self-similar up to x/D - 0.40, which is just upstream of the energy

maxima for that mode. Outside the central region, the moduli reach

self-similarity past x/D - 0.25. This location corresponds to the first

emergence of a 180 degree phase change seen in the phase distributions

at the bottom. The 180 degree phase shift coincides with the radial

position of the minimum mode amplitude. The double peaked behavior of

the fundamental mode moduli and 180 degree phase change are consistent

with the concept of a developing vorticity wave. In the middle region 0

of the shear layer, the phase lines of the fundamental mode are

approximately equidistant indicating a constant wave velocity.

The moduli of the subharmonic eigenmodes, in Figure 6, also

exhibit self-similar behavior in the central region of the shear layer.

Even at x/D > 0.30 (asterisked positions) in the region of enhanced

resonant growth, the distributions only deviate slightly. The effect of

subharmonic resonance can be seen in the eigenfunction phase

distribution. There we observe an abrupt increase in the streamwise

spacing of iso-phase lines for x/D 2 0.30. This corresponds to a

decrease in the phase velocity of this mode, which we will document in a

later figure, is an adjustment to match its phase velocity to that of

the fundamental mode.

0



127

In further statistics, we wish to utilize a single velocity sensor

which will follow a similarity line while moving downstream. Drubka

(1981) had ch-nn to follow the constant mean velocity lint U/U - 0.6.

A comparison of the streamwis growth rates for the fundamental

axisymmetric and subharmonic modes determined by following this line is

shown in Figure 7. In this comparison, Drubka's data have been shifted

to the level corresponding to a 1 Hz. spectral band width, which is the

standard band width for all our results. To investigate the sensitivity

of this result to following different lines, we generated similar plots

obtained while moving along the center of the shear layer at a constant

U/Us- 0.5, as well as along a line which followed the mode streamwise

fluctuation maximum. The latter is shown in Figure 8. Neither of these

approaches takes into account the radial spreading of the shear layer.

In order to capture this effect in the growth of energy in these modes,

we also plotted the streamwise development of the energy in streamwise

velocity fluctuations in each mode integrated radially across the layer

at different x/D locations. The results of this approach are presented

in Figure 9.

Comparing these first on a qualitative basis, we observe a number

of similar features. Focusing first on the growth of the fundamental

axisymmetric mode (open symbols), we observe an initial region of

constant exponential growth, which eventually reaches a saturation limit

at approximately x/d - 0.45. Past this point the energy in the

fundamental mode decays. The streamwise growth of the subharmonic mode

shows two regions of exponential growth. The first falls in the range

from 0.15 s x/d s 0.25 and the other from 0.25 < x/D s 0.45. Upstream

of x/D - 0.15, longer wavelength subharmonic is affected by the close
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proximity to the lip. Therefore within the first approximate quartcr of

the subharmonic wavelength, the amplitude levels are off the expected

exponential growth rate observed downstream of this point

On a quantitative basis, irregardless of the method used, the rate

of exponential growth of the fundamental axisymmetric mode is virtually

the same. Also, the x/d position of fundamental mode energy saturation

does not vary significantly by the four approaches. The significance of

the location of the fluctuation maximum is that it marks the position of

the first roll-up of the shear layer into a vortex. When scaled on the

axisymmetric mode frequency, x/D - 0.45 corresponds to three wavelengths

from the jet lip.

For the subharmonic mode the rates within both regions of constant

exponential growth is also virtually the same between the four methods.

Each show the same x/D location of 0.25 for the beginning of the

enhanced resonant growth, and except for the similarity line U/Uj - 0.5,

each mark the location of subharmonic energy saturation to be at x/D -

0.6. The first position corresponds to approximately two fundamental or

one subharmonic wavelengths from the jet exit. This location coincided

with the change in the phase velocity of that mode seen in Figure 6

(bottom). The significance of the point of energy saturation of the

subharmonic mode is that it marks the average location of vortex

pairing. The characteristic position corresponds to four fundamental or

two subharmonic wavelengths from the jet exit.

The streamwise phase development for these modes is shown in Figure

10. These are presented along the mean velocity line U/UJ - 0.6 for

comparison to Drubka (1981). For the fundamental mode a constant phase

velocity of 0.5U is observed which is predicted well from linear
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theory. For the subharmonic mode the phase velocity in the-initial

growth region is a higher value of approximately 0.8U., which is.3

also in good agreement with linear theory. In the second growth region

of the subharmonic, the phase velocity has reduced significantly to

match that of the fundamental mode. The matching of the phase

velocities is a prerequisite for resonance of the type predicted by

Kelly (1967).

111.3 Effect of Initial Conditions on Dominant Eigenmodes

The remaining figures document the effect of mild axisymmetric

forcing at the observed natural fog and at a frequency 25 percent

higher, on the development of the initial dominant eigenmodes and their

interacted modes. In addition to the pure tone forcing, the effect of

broad band disturbances obtained by increasing the core turbulence level

is also presented. The forcing was performed at Re - 70,000 so that in

the natural condition it also provides a comparison to the previously

documented Re - 42,000 case which was known to exhibited the special jet

column coupling.

The effects of the mild external acoustic forcing and the initial

core disturbance level on the growth of the momentum thickness of the

jet at Re - 70,000 are shown in Figure 11. The initial momentum

thicknesses used to normalize the growth were measured at x/D - 0.05.

These values are summarized in Table 1.

From Table 1, it is apparent that the initial momentum thicknesses

did not vary significantly from one case to the other. T.ts would

indicate that even in the presence of these changing initial disturbance

conditions, the frequencies of the most unstable modes, which scale with

the initial shear layer thickness, remain unchanged.



130

Table 1. The Effect of External Acoustic Forcing and Initial
Core Broadband Disturbance Level on the Initial Momentum
Thickness (in cm), for the Jet at Re - 70,000.

Forced at Forced at
Case Natural Natural 2050 Hz 2500 Hz 0

1L 3L IL 1L

e. 0.0136 0.0138 0.0137 0.0142

Figures 12 and 13 document the spatial distribution of fundamental

axisymmetric and subharmonic mode energy in streamwise velocity

fluctuations within the shear layer to x/D - 0.6 for the different

initial states. The natural case can be directly compared to its lower

Reynolds number counterparts in Figures 4a and 4b. In doing so, one

must account for the shorter development length which scales by -Iie

ratio of the fundamental frequencies and core velocities. Based on

these, the development length for the Re - 42,000 1L case is 1.40 times

longer than that of the Re - 70,000 1L case. This has been taken into

account in the scaling of the ordinate to allow these two cases to

be overlayed for comparison. For such a comparison, the spatial energy

distributions for the fundamental and subharmonic modes in the IL

conditions at the two Reynolds numbers are quite similar. Although we

expected this based on the linear instability of the initial shear

layer, it was not certain if some differences might arise due to the

special nature of the Re - 42,000 case. Comparison of these two cases

shows that the added effect of this final frequency coupling on the

global energy distribution in f0 and f0/2 modes, in the initial region

up to the point of first pairing, is minimal.
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The immediate effect of pure tone forcing at the natural

* fundamental axisymmetric mode frequency of 2050 Hz and at a 25 percent

higher frequency of 2500 Hz is to increase the initial amplitude of

these modes at the jet exit, but not to greatly affect the global energy

* development. At the higher frequency, the development length shortens

by an amount commensurate with the shorter wavelength of the unstable

mode.

• We do however observe some interesting differences in the

subharmonic mode development with the mild pure tone forcing at the

natural f This is manifest in the increase in the size of the region,

in the vicinity of the jet exit, where we could not detect a spectral

peak (heavy line border) at the subharmonic frequency. In the unforced

(natural) cases at both Reynolds numbers, the initial amplitude of the

subharmonic had always been larger and more defined than that of the

fundamental. This, we will demonstrate, is a result of downstream

feedback in the form of acoustic waves produced during pairing. The

mild forcing at f0 appears to inhibit this feedback process. Mild

forcing at the higher frequency does not exhibit this characteristic so

that the "subharmonic" 5/11f0 mode exhibits a strong peak throughout

the shear layer near the jet exit. A broad band increase in the core

disturbance is observed to mask spectral peaks in the initially weaker

fundamental axisymmetric mode at the jet lip, but not that of the

subharmonic. The x-development qualitatively follows that of the

natural low core disturbance cases.

The eigenfunction modulus and phase of streamwise velocity

fluctuations for the fundamental and subharmonic modes at the higher

Reynolds number, low initial disturbance condition were quite comparable
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to the lower Reynolds number equivalents in Figures 5 and 6, and

therefore are not reproduced here. The streamwise growth of these two

modes is shown in Figure 14. Here we have chosen to follow the line of

maximum streamwise velocity fluctuations of each mode, which was shown

to be representative of the whole shear layer in previous figures.

Comparing this figure to its lower Reynolds number counterpart in Figure

8, we observe the same stages of development namely, a constant

exponential growth region for the fundamental axisymmetric mode, an

initial and secondary exponential growth region for the subharmonic

mode, and respective saturation locations at x/D values corresponding to

three and four fundamental mode wavelengths from the jet exit. The

spatial growth rates of the fundamental and initial subharmonic are

virtually the same for the two Reynolds numbers when scaled by their

wavelengths, although the secondary subharmonic growth is somewhat

higher at the higher Reynolds number.

At this higher Reynolds number, a spectral peak at the initial

m - + 1 helical mode frequency was more discernable. We therefore

plotted in Figure 15, the streamwise growth of that mode, as well as the

difference mode, f1 -f0. Focusing on the former, we observe a constant

valued exponential growth with a spatial rate which is the same as that

of the fundamental axisymmetric mode. The comparable growth rates of

these two modes had been predicted by Michalke (1971).

The difference mode is observed to exhibit two different regions of

exponential growth, like that of the subharmonic mode. The x/D location

of the change in spatial amplification of the f -f0 mode also coincides

with that point in the subharmonic growth. This would suggest a form of
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interaction between these modes which we will expand upon in a later

section.

With mild forcing at the fundamental axisymmetric mode frequency,

the initial amplitude of that mode, seen in Figure 16, has increased by

approximately a factor of ten. The initial amplitude of the

subharmonic remains the same. These growth curves show the same

characteristic features, although the point of change of slope in the

subharmonic growth is not nearly as sharp as in the natural cases. In

addition, the location of subharmonic energy saturation has moved

slightly downstream. The location of the subharmonic maximum for the

natural case is marked on this figure as x p/D.

When the jet is mildly forced at a frequency 25 percent higher

(2500 Hz) an exact fundamental/subharmonic combination was not found to

exist. Instead, near-subharmonic modes at frequencies of 5/llf 0 and

6/11f0 were observed, as well as a difference combination at 1/11f 0.

We have speculated that the initial "subharmonic" mode was at the 5/11

f0 frequency. Part of the basis of that speculation is contained in the

eigenfunction magnitude and phase distributions in Figure 17 and in the

x-growth of the maximum streamwise velocity fluctuations in Figure 19.

In the case of the former, we observe a good comparison to the

subharmonic eigenfunctions for the natural jet, such as in Figure 6.

The streamwise growth of the 5/11f0 mode exhibits the characteristic

"subharmonic" development by the presence of two constant exponential

regions, with the second having a significantly higher rate. The change

in growth rate was also found to coincide with a change in phase

velocity, seen in Figure 17.

All this can be contrasted to the spatial characteristics of the
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6/l1f 0 mode. The eigenfunction magnitude and phase distributions in

Figure 18 show some early x-similarity which is subharmonic-like,

but eventually further downstream it develops two peaks and considerable

scatter. This behavior is a primary reason why we chose to present

these past growth curves while following the fluctuation maximum, since

for this case alone, the other approaches would not be representative.

The x-growth of the 6/llf 0 mode is shown in Figure 20. For that mode

we observe a single, constant exponential growth at a rate which is

somewhat less than that of f We observe no change in slope prior to

saturation and no change in phase velocity characteristic of subharmonic

behavior. Energy saturation occurs at the same x/D location for the

5/11f0 and 6/llf0 modes.

The streamwise growth of the 1/llf mode also seen in Figure 20

shows two exponential _,rowth regions, similar to the natural difference

mode (f1-f0 ) in the natural jet. Also similar is that the x/D location

for the change in growth of this difference mode coincides with the

point of growth rate change of the 5/11f0 "subharmonic." We have not

verified if the 6/11f0 mode is a nonaxisymmetric mode, as in the case

of f1 in the natural jet.

IV. Unsteady Mode Selection

The experimental results of Drubka (1981) had verified that a

circular jet is unstable to both axisymmetric and helical modes. He had

speculated, based on flow visualization, that in the initial region, x/D

< 1, the natural jet alternates between these two modes. The answer to

this speculation defines a one of the principal objectives of this

study. Further, the documentation of the unsteady behavior and the

effect of low level harmonic forcing on the unsteady characteristics of
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the jet are also addressed with the use of short-time spectral

estimations.

The methods used for studying jet instabilities, such as those used

by Drubka (1981), are typically based on long-time-average statistics.

For example, the spectral estimations determined from Discrete Fourier

Transforms (DFT) are usually based on the assumpLion that the

correlation function of each data ensemble asymptotes to zero by the end

of the sampling interval. This limits the minimum amount of time lags

required for proper spectral estimation. The random band-width noise

introduced by the use of DFT also requires averaging of ensemble spectra

or frequency smoothing. This creates a major problem. Any alternate

switching of the jet instability modes from axisymmetric to helical may

occur in an unsteady and non-periodic manner. The long-time statistics

required for the convergent estimation of the spectral function using

DFT will act to mask this switching process by producing two apparent

co-existing peaks at frequencies corresponding to these two modes. In

addition, any slight time-variation in the mode frequencies would result

in a broadening of the spectral peaks. Because of these manifestations

of standard DFT processing methods, we computed short-time single

realization spectral estimates using the Maximum Entropy Method (MEM). A

description of the method is presented in Appendix A. The discussion of

the results for different initial conditions in the jet are presented in

the following.

IV.A Results of Unsteady Mode Analyses

The short-time instability behavior of the three naturally

developing and two harmonically forced jets are presented in the

following. For each case, a series of short-time MEM power spectra were

calculated for the simultaneously sampled pressure and velocity
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fluctuation data series in the shear layer at the radial position

U/U-0.6. The amplitude and phase eigenfunctions of these modes shown

previously, documented the x-similarity of that location. For each flow

condition, and at each downstream location, consecutive MEM power

spectra were calculated from contiguous overlapping short-time-series

segments. It was found that 18 time-series points would result in

appropriate short-record MEM spectra for the cases in this study. Based

on the data sampling frequency, these 18 point records correspond to

approximately five to eight axisymmetric wavelengths, (eight for the

2500 Hz forced case), or six to eight helical mode wavelengths.

Each sequential :8 point time-series was formed with a 15 point

overlap of the preceding record. That is, each record was advanced by

only three new time-series points, corresponding to one axisymmetric

wavelength, for each consecutive spectral estimate. This amount was

found to produce a smooth transition between contiguous spectra of the

type shown in Figure 21. To obtain the most conservative spectrum with

emphasis on the frequency content rather than on the amplitude, an 8

point predictive error filter length was chosen for use with the 18

point records. This consistently placed the estimate into region C of

our criterion map (see Appendix A), thereby producing spectra which have

the correct frequency content but may not display the proper energy

content.

As a verification that the correct spectral estimates were obtained

from the MEM approach, long-time-averaged spectral distributions were

formed by ensemble averaging the consecutive short-time estimates. These

were compared to the spectra for the same data properly computed using

DFT. In all cases, little difference was exhibited between the

spectra from the two methods. Although this is not a guarantee that
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every short-time spectral estimate is completely correct in all aspects,

it demonstrates that a statistical majority of these have the correct

frequency and amplitude information. With this degree of confidence,

the results obtained by this approach are presented.

Figure 21 depicts the spectral evolution for the IL case at

Re - 42,000 and x/D - 0.35. This condition was chosen to demonstrate

the alternate switching between the axisymmetric and helical modes

ongoing in this jet. These two modes are denoted by f0 and f at the top

of the figure. Following the evolution in this figure, at 0 ms., when

the data acquisition was started, the jet was dominated by the helical

mode. This is evident by the peak at the frequency f1 , After

approximately 15 ms., the emergence of the peak at f0 marks the

switching from the helical mode to the axisymmetric mode. The jet

remains in the axisymmetric mode until approximately 35 ms into the

acquisition run where it shifts back to the helical mode. The alternate

switching between modes is apparent throughout the time evolution

depicted in this figure with both modes appearing to exist nearly an

equal amount of time. A quantitative measure of the percentage of time

each mode exists follows later in this section.

A similar alternate switching between these two fundamental modes

is evident from the time evolution of spectra in Figure 22, at the

higher Reynolds number of 70,000, for the low initial disturbance level

jet at x/D - 0.25. This is contrasted with that evolution depicted in

Figure 23, which occurred when the jet was axisymmetrically forced at

the frequency f As expected, this forcing organized the jet

instability and effectively suppressed the initial development of

non-axisymmetric (helical) disturbanccz.
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To provide a quantitative measure of the percentage of time of

occurrence of these dominant modes, a method was developed to detect the

existence of spectral peaks (modes). The method defined a peak to be at

a frequency in the spectral distribution where its amplitude was higher

than at the two neighboring frequencies. The use of such a simple

definition was made possible only because of the smooth nature of

spectra obtained from the MEM approach. This was meant to detect only

the existence and frequency of the spectral peaks (SP). No information

or criteria about the amplitude of the peaks was deduced from this

method. Employing this method on the consecutive MEM spectra of both

velocity and pressure data, such as the ones shown in Figures 21 through

23, the percentage of time a spectral peak exists at any of the

resolvable frequencies, irregardless of its amplitude, was deduced. The

results are presented in the SP histograms of Figures 24 through 28.

These were constructed from 2000 consecutive MEM spectra in order to be

representative of the overall spectral peak distribution.

The spectral peak histogr-os of the pressure fluctuations at the

lip of the jet for Re - 42,000, IL condition are shown in the top of

Figure 24. The frequencies corresponding to the difference and

subharmonic modes are well defined, and have a high value owing to their

dominant existence in the spectrum. This mirrors the initial self

forcing of the jet due to the coherent feedback at these frequencies.

In the initial shear layer for the same jet conditions, the

velocity SP histograms in the bottom part of Figure 24 bring out all of

the dominant modes. Since the peak detection does not discriminate on

amplitude, we expected the SP histograms to be more sensitive to even

low amplitude modes which exist a majority of the time. This was

evident in this figure, where as many as 6 modes can be distinguished.
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At the location closest to the jet exit, x/D - 0.15, the histogram is

similar to that for the unsteady pressures at the lip. Following the

development downstream, we observe the strong emergence and decay of the

dominant modes which reflects their evolution and interactions.

For the same jet disturbance condition at the higher Reynolds

number of 70,000, the velocity SP histograms in Figure 25 reveal a more

consistent existence of the growing dominant modes. At this higher

velocity, the development of the jet by this last station is equivalent

to that at x/D - 1.0 for the previous figure. As in the lower Reynolds

Liumber case, the helical mode appears to exist a majority of the time

only downstream of the pairing location, x/D - 0.8 for Re - 42,000; 0.45

for 70,000.

The effect of low level forcing at the fundamental axisymmetric

mode frequency on the Re - 70,000 jet is displayed in the velocity SP

histograms in Figure 26. From these, the forcing at f0 is observed to

organize the fundamental axisymmetric mode, evident by its significantly

higher existence percentage. Near the lip at x/D - .14, the SP

occurrence of the subharmonic is lower in amplitude and more broadly

distributed than in the unforced case in Figure 25. By x/D - .26

however, the forcing is observed to better organize the subharmonic

mode. As seen in this figure, the helical mode was strongly suppressed

by the axisymmetric forcing. Speculation on the continued existence of

a mode near the difference frequency in this forced jet is taken up

later.

A comparison of the SP histograms for the lip pressure fluctuations

in the forced and unforced condition at Re - 70,000 was shown in the top

part of Figure 26. In the forced case, the SP histograms reflect the

additive effects of the acoustic forcing and the downstream influence of
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the developing shear layer. As a result, the distribution at the

forcing frequency, fop is very sharp and high valued with a strong

suppression of adjacent frequencies. The distributions at the

subharmonic and difference mode frequencies are, however, relatively

unchanged. We contrast this behavior to that for the case of the jet

forced at 2500 Hz in Figure 27. In this case the natural f mode at 2050

Hz was strongly suppressed and replaced by a new axisymmetric mode at

the 2500 Hz forcing frequency. The pressure histograms at the lip reveal 0

a sharp distribution at the forcing frequency as with the previous

forced case. In contrast to that case, the 5/llf0 "subharmonic" has

been sharply increased in the pressure histograms. In addition, the 0

1/lif 0 difference mode is also strongly evident. These lower

frequencies are undoubtedly a result of downstream feedback. The high

occurrence of 5/11f 0 in the pressure signal further supports that this

is the axisymmetric "subharmonic" mode for this forced jet.

The effect of higher initial disturbance levels in the core at

Re - 70,000 is presented in the SP histograms in Figure 28. Comparing

these to the low disturbance case of Figure 25, the higher broad-band

disturbances are observed to lead to less organized axisymmetric modes.

In particular, an almost equal predominance of the helical mode at all

streamwise locations is observed. A similar sensitivity of the helical

mode to initial broadband disturbance levels was reported by Drubka

(1981).

In order to form statistics on the occurrence and interaction of

the different modes brought out by the MEM spectral estimates, spectral

peak indicator functions were generated. For these, the frequencies

corresponding to the fundamental axisymmetric mode, its subharmonic, the

helical mode, and the difference mode for the jet were focused on. The



141

frequencies corresponding to the axisymmetric fundamental mode and

difference mode were identified from their predominant location in the

SP histograms. The subharmonic frequency was then constrained to be

half that of the axisymmetric frequency. Similarly, the helical mode

frequency was constrained to be the sum of the axisymmetric fundamental

and difference mode frequencies. The frequency band width, within which

a spectral peak would be accepted to correspond to one of these modes,

was chosen as the average of the half width of a Gaussian distribution

fit of the axisymmetric and the difference mode velocity SP histograms.

These band widths for the different modes are indicated on the SP

histograms of Figures 24 through 28.

If a spectral peak was observed within the frequency bandwidth of a

given mode on the HEM power spectrum, that mode was considered to be

present at that time. This occurrence resulted in a value of one for

the indicator function for the period of time that the mode existed. A

value of zero indicated the instant over which the mode was not present.

The indicator functions for the different modes, at a particular jet

condition, were correlated to bring out any interdependence between the

evolution of the jet instabilities. The percentage of time an

instability mode exists in the total time series will be equal to the

average value of the indicator function. Sample indicator functions

corresponding to the HEM spectral evolutions in Figure 22 is presented

in Figure 29.

Statistic summaries of the occurrence of the four principle jet

modes, taken from spectra of pressure fluctuations at the jet lip, are

presented in Table 2 for the different jet conditions. These statistics

are based on approximately 2000 HEM spectra covering approximately 2

seconds of data acquisition for the Re - 42,000 case and 4 seconds for
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the Re - 70,000 cases. Analysis of the longest continuous data records

of 10 seconds for the Re - 42,000 1L case showed no significant

.differences in these statistics or their distributions.

The results in Table 2 provide information about the disturbance

field fed back from the developing velocity field. In the Re - 42,000,

1L case, the occurrence of the subharmonic mode is very high. At this

Reynolds number, the feedback of the subharmonic mode resulting from

Table 2. Spectral Peak Occurrence of the Instability Modes in the
Pressure Field at the Lip of the Jet in Percent of Total
Time.

Mode
Case f1-f0  1/2 f0  fo f1

Re - 42,000 45.4 35.0 6.3 6.3
Case 1L (2.2) (1.5) (1.0) (1.0)

R- - 70,000 38.1 13.0 26.3 3.8
Case 1L (2.1) (1.1) (2.9) (0.6)

Re - 70,000 27.7 15.3 64.4 1.8
Forced 2050 Hz (1.2) (1.9) (1.6) (0.2)
Case 1L

Re - 70,000 23.5 6.4 26.9 6.7
Case 3L (1.3) (0.5) (2.1) (1.2)

Mode
Case 1/11 f 5/11 f 6/11 f f 0

Re - 70,000 52.0 35.5 3.8 48.8
Forced 2500 Hz (1.4) (2.4) (0.6) (1.0)
Case 1L

Note: The data in the parenthesis is the standard
deviation calculated from several sets of SP
indicators.

S
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pairing, is significantly higher owing to the natural coupling of the

initial shear layer and jet final Strouhal frequencies. By comparison,

we observe that at the higher Reynolds number where the natural coupling

is not present, the subharmonic mode is significantly less dominant.

At the higher initial disturbance level condition a significant

reduction in the occurrence of the subharmonic mode in the lip-pressure

signal was observed. The introduction of broad-band disturbances in this

* case has also resulted in an increase of the occurrence of the helical

mode. One must be careful, however, about trying to infer too much

information about the helical mode from the analysis of the pressure

fluctuations at the lip, since this mode did not exhibit a strong peak

in the lip pressure SP histograms.

The occurrence of the difference mode, which shows a strong

existence in the pressure signal, is only slightly reduced by the

axisymmetric forcing at f0 " If the difference mode is the result of the

interaction between the axisymmetric and helical modes in the shear

layer, the reduction in the occurrence of the helical mode might suggest

a similar reduction effect on the difference mode. This, however, was

not the case.

The streamwise development of the SP occurrence for the four

dominant instability modes in the velocity field of the shear layer is

shown in Figures 30 and 31 for the different jet conditions. We focus

first on the development of the subharmonic mode in the Re - 42,000 1L

case, in Figure 30. There, past the influence of the lip, we observe a

decrease in the SP occurrence towards a minimum at x/D - 0.35. This

location is slightly downstream of the beginning of the subharmonic

resonance. Downstream of this location, the occurrence of the

subharmonic mode increases, reaching a maximum at x/D - 0.65. This
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position coincides with the subharmonic fluctuation maximum.

The occurrence development of the fundamental axisymmetric mode is

almost the reciprocal to that of the subharmonic. The occurrence of

this mode increases from the lip and reaches a maximum at x/D - .45,

which closely marks the position of maximum energy in that mode. The

rapid decrease in its occurrence past x/D - 0.45 is associated with the

rapid growth of the subharmonic mode and ultimate pairing of the formed

vortices. Similar development behavior of these modes occurs for the

higher Reynolds number of 70,000, 1L case, shown in Figure 31a.

The external acoustic forcing at the fundamental frequency has

interfered greatly with the natural development of the jet as depicted

by the velocity SP occurrence development of Figure 31b. As a result of

the forcing at f0 the occurrence of this mode is initially much higher

than in the natural case. After a small initial increase, its

occurrence decreases towards the natural case behavior. By x/D - 0.35,

the energy of the axisymmetric mode has reached a maximum. At this

location the forced axisymmetric mode has becomes less organized,

evident by a broadening of its SP histograms in Figure 26. These results

reflect the diminishing influence of the low level forcing on this mode

as it develops downstream.

The forcing at f0 has moved the maximum occurrence of the

subharmonic mode slightly downstream of the natural location. Since

this maximum is associated with the pairing process, this low level

forcing appears to have slightly impeded that mechanism.

Acoustic forcing at a frequency 25 percent higher than the natural

f0 (31c) has resulted in the occurrence of the forced mode to reach a

maximum closer to the jet exit, x/D - 0.25. in proportion the the ratio

of the forced frequency of natural f0 " This case is however more
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complex than the others in that the occurrence of the 5/11f 0

"subharmonic" is a maximum upstream of the fundamental mode energy

maximum. The occurrence maxima of the 6/11f 0 and 1/lif0 modes bracket

the locations of their energy maxima and that of the 5/l1f0 mode. With

the introduction of broad-band disturbances in the 3L case (31d), the

occurrence of the subharmonic mode is initially lower, however its

ultimate development as well as the x-development of the other modes is

comparable to the lower disturbance condition.

Focusing on the helical mode, we observe for the lower Reynolds

number, IL case that its occurrence development is approximately the

reciprocal to that of the subharmonic. The helical mode is only well

organized just before the onset of the subharmonic resonance. Past the

pairing location its percentage time of occurrence is half the value at

its peak. At the higher Reynolds number of 70,000 in both the low and

high initial disturbance conditions, the behavior of the helical mode is

siailar to that of Re - 42,000 case. The only difference is in the

percentage values, where a greater predominance of the helical mode is

observed in the higher disturbance 3L condition. The axisymmetric

forcing of the jet has effectively eliminated the occurrence of the

helical mode. The curious persistence of the difference mode is also

evident here. In general, the streamwise development of the occurrence

of the difference mode appears to follow that for the subharmonic mode,

and at the furthest downstream measurement location it was the most

predominant mode.

In order to better present any interdependence between the

fundamental axisymmetric and helical modes, their cross-occurrence was

computed from the indicator functions. The streamwise development of

that quantity for the unforced jet at both Reynolds numbers is shown in
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Figure 32. Also replotted for these cases are the auto-occurrence

distributions for f0 and f If these two modes were statistically S

independent of one another, that is, if the occurrence of one mode was

not related to the occurrence of the other, their croRA-occurrence would

be equal to the product of their auto-occurrences. This product 0

signifying statistical independence, is indicated as the small-dashed

line in the figure.

It is apparent here that for most of the initial region of the jet, 0

the cross-occurrence of the fundamental axisymmetric and helical modes

(indicated by the dashed-dotted line) is zero. This is true in the time

series taken from both the velocity and lip pressure data. The only •

location where their co-existence was not zero was at the x-position of

the beginning of subharmonic resonance. The SP occurrence correlation

between the axisymmetric and helical modes was also calculated and found

to be consistently near zero. These results indicate that the two modes

rarely coexist at the same time in the jet.

9

V. Nonlinear Phase Locking

The first and second order spectral estimates, have been used in

previous figures to determine the growth of instabilities in the jet and

to document their linear interactions. In this section we are concerned

with nonlinear, sum and difference interactions which are documented

through the third order spectrum, or bispectrum. 0

Some early references to bispectral estimates include Hinich and

Clay (1968) and Hasselman et al. (1963) in applications to geophysical

flows. Lii et al. (1976) used the bispectral estimates, in conjunction •

with the equation for the rate of increase of energy in a homogeneous

turbulent flow field, to show the source and direction of energy

. . . . . .
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transfer between the frequencies. Other investigators have extended the

use of bispectral estimations to study other complex nonlinear flow

systems such as transitio- to turbulence in a two-dimensional wake

(Miksad et al., 1982, 1983; and Solis et al., 1986); instability and

feedback in an impinging shear layer (Kinsely and Rockwell, 1981); and

in a Blasius boundary layer undergoing transition to turbulence (Corke

and Mangano, 1987, 1989).

In the present work the bispectral estimates were utilized to

measure and document the nonlinear interactions which are a part of the

initial shear layer instability, vortex formation, vortex pairing and

feedback in axisymmetric jets. Because of the spatially changing

energy levels in the modes of interest, the normalized bispectrum, or

bicoherence was used. In this manner the emphasis was on the nonlinear

phase locking which is necessary for efficient energy transfer between

modes. Finally to determine the upstream or downstream influence of the

flow, the cross-bicoherence was calculated for the simultaneously

samples spatially separated time series. These consisted of velocity

fluctuations in the shear layer at different x-locations along a

similarity line, and unsteady pressures at lip at the same azimuthal

location. A primary emphasis was placed on the interactions of the

fundamental axisymmetric and subharmonic modes in order to document the

upstream influence of the lip, their cooperative evolution, and the

downstream feedback of those quantities which might have a bearing on

the subharmonic resonance and pairing processes.

V.1 Cross-Bicoherence

The cross-bicoherence (CBC) is a measure of the nonlinear phase

locking between frequencies in three time series. The origins of this

statistical quantity is given in Appendix B. Its definition is contained
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in equation 26 ilthough the computationally simplier form in equation

27 was used ir. his study. The time series used in the application of

this statistic were the streamwise velocity fluctuations acquired at

different spatial locations in jet shear layer, u(x,r,t), and the

simultaneous pressure fluctuations at the lip of the jet, p(t) (see

Figure 1). The third time series is formed by the sum or difference of

these two.

When interpreting the CBC estimates, one finds that the order of

the interacting frequencies is an important parameter for determining

the direction of influence. For two separate time series, such as are

used in these studies, as many as nine (three to the power of two)

combination orders are possible, although only six are unique. If for

example, a high CBC is observed between frequencies f1 and f2 (f-W 1 /2r)

and their sum or difference frequencies in the time series, three 0

possible interactions could have taken place; namely, that the sum or

difference frequencies resulted from the interaction between f and f21

or fl1 had interacted with the sum or difference frequency to produce f2'P

or that f 2 had interacted with the sum or difference frequency to

produce fl' When the origin of a mode frequency is clear, for example

if it results from an instability process, this may not be a problem. In

the jet however, because of feedback, it is not always clear whether the

pressure field at the lip of the jet is the origin of the velocity

fluctuations in the shear layer, or if the velocity fluctuations are the

origin of the unsteady pressure field at the lip. To clA-ify this

problem, it becomes necessary to look at the streamwise evolution of the

CBC while changing the order of processing of spatially separated time

series.
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The upper frequency limit of the CBC is set by the Nyquist

criterion, such that the sum of any two frequencies can not exceed half

the sampling frequency. From this frequency limit, the region of

validity of a coherence plot for summed interactions takes the form of a

right triangle bounded by a -45 degree line, crossing the two Cartesian

axes at the half sampling frequency value. The magnitude of the

cross-bicoherence is drawn as constant level contours. By our

convention, the processing order of frequencies is such that the first

frequency is read from the abscissa, the second one from the ordinate,

and the third from the point of intersection between the -45 degree line

and either of the two axes.

Of the six possible independent processing orders, only three were

found to be useful. The order of the processing of the CBC greatly

affects the result and is therefore indicated on each plot by the

quantity subscripts, p indicating that it was derived from the pressure

signal, and u from the velocity signal. The magnitude of the CBC is

plotted as contour levels, starting with the lowest level of 10% and

increased by 25% up to 85%. Above each of the CBC estimates appears the

power spectra of the velocity and pressure signals, plotted in solid and

dashed lines, respectively. These are plotted with an arbitrarily

shifted origin and with a full dynamic range of 50 db. The pressure

spectrum is plotted only as a reference and it does not differ from one

figure to another within the same condition. Also included is the

linear coherence between the velocity and the pressure signals. This is

plotted as a dotted line, and by definition it falls between zero and

one.
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V.2 Nonlinear Phase Locking for Natural Jet Modes

The initial phase-locking between the modes measured in the

unsteady pressure field at the lip of the jet at both Re - 42,000 and

70,000 IL cases, is depicted in the auto-bicoherence, P ppp, shown in

Figure 33. This symmetrical bicoherence exhibits five distinguishable

peaks, so-labeled on the figure, which are the result of the

interactions between the longer wavelength modes 1/2f0 and fl-fO.

Peak number I signifies the phase-locking between the fundamental

axisymmetric and subharmonic modes in the triple form

1/2f0 + 1/2f 0 - f0 * This interaction is stronger in the lower Reynolds

number case where the initial and final Strouhal numbers are an integer

power of two apart. Peak numbers 2 and 3 result from the interaction of

the subharmonic mode and the difference mode to produce their sum and

difference modes, namely, /2f0 + fl-f0 - fI-l/2f0 and /2f0 - •

fl'f " 3/2f0 - f Peak number 4 results from the interaction

of the subharmonic mode with the multiple interacted mode of frequency

3/2f 0 - f1 to give their sum at frequency 5/2f 0 - f1 " Peak 5 results

from an interaction of the fundamental axisymmetric mode and the

interacted mode fl-f0 to give the mode at frequency 2f0 - f The

nonlinear interactions depicted by the auto-bicoherence

distributions in this figure represents the initial self-forced

"imprint" resulting from the downstream influence of growing instability

and interacted modes in these jets.

In documenting the downstream evolution of the CBC, the emphasis

will be placed on the interactions involving only the fundamental

axisymmetric and subharmonic modes, peak 1 in Figure 33. The natural

behavior of the jet at Re- 42,000 will first be used to point out the

essential mechanisms involved in fundamental-subharmonic resonance and
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feedback. This case will then be used to aid in interpreting the

results in jets having different initial disturbance conditions.

A sampling of the cross-bicoherence distributions, Pppu and upp

for the Re - 42,000, IL jet is shown in Figure 34. This was taken at

x/D-0.25 which corresponds to the point of the beginning of resonant

subharmonic growth. A composite of results from similar figures taken at

different x/D locations is presented in Figure 35 in order to document

the fundamental/subharmonic interaction in this jet. This figure

includes the streamwise development of Pppu and Pupp for peak 1, of the

linear coherence, rUP , and of the streamwise velocity tluctuations at

f0 and f0/2 (reproduced from Figure 7).

At the closest measurement location, x/D - .05 in Figure 35, the

linear coherence of the subharmonic mode is approximately 50% whereas

for the fundamental it is almost zero. The small peak of approximately

40% in PUpp and the lack of a peak in Pppu indicate that the subharmonic

mode at this location is phase-locked to the pressure field at the lip,

and that no such phase-locking is present for the fundamental mode.

The relative difference between the magnitudes of Pupp and the linear

coherence, rup , at the subharmonic frequency indicate that the

subharmonic mode velocity fluctuations at this most upstream position

are linearly phase locked to the pressure fluctuations at the lip.

At x/D - .15, the linear coherence of both modes has increased

slightly. The cross-bicoherence magnitudes have also increased to a

value approximately the same as for the linear coherence. This indicates

the beginning of nonlinear interaction between f0 and f0/2. By the

next location at x/D - .25, an abrupt increase in the growth rate of

energy at fo/2 marks the beginning of subharmonic resonance. ppu at

this location is approximately 90% which, when accompanied by the
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respectively low Pupp of approximately 20 percent, indicates a

nonlinear phase locking between f in the velocity field and f0/2 in

the pressure field at the lip. The arrow pointing downstream in the

growth curve in this figure signifies this upstream influence of the lip

on the subharmonic mode leading to subharmonic resonance.

At x/D - 0.45, Pupp is now larger than Pppu suggesting a nonlinear

phase locking between f0/2 in the velocity with f0 in the pressure. At

this same location, the energy at f has reached a maximum. We

associate this with the first roll-up of the shear layer into discreet

vortices spaced at the fundamental wavelength. The larger up suggests

that this energetic process results in feedback of fundamental mode

energy from the velocity field to the pressure field at the lip. This

downstream influence is indicated by the upstream facing arrow at the

frequency f0 ' It is drawn lightly to signify that fluctuations at f0

are only weakly felt at the lip.

At x/D - 0.65, Pppu is approximately 100% and significantly larger

than 0 pp" At this location, the energy at f0/2 now has reached a

maximum. This is associated with approximate point where the formed

vortices pair. This indicates that this energetic process results in a

nonlinear phase locking between the fundamental mode in the velocity

and the subharmonic mode in the pressure. This near perfect phase

locking is strong evidence of feedback of subharmonic mode energy from

the velocity field to the pressure field at the lip. This downstream

influence is drawn as a bold arrow to signify that it is strongly felt

at the lip.

V.3 Effect of Initial Disturbances on Nonlinear Development

The effect of forcing the Re - 70,000, 1L jet is summarized in

Figures 36 through 38 at the fundamentally important x/D locations

S
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corresponding to the beginning of subharmonic resonance, at the point of

fundamental mode energy saturation and at the point of subharmonic mode

energy saturations. At the first location at x/D - .15 in Figure

36, the cross-bicoherence 6pp shows a value at peak 1 indicative of the

fundamental-subharmonic interaction resulting from the upstream

influence of the lip, seen previously at the lower Reynolds number.

At the bottom part of the figure, when the jet was forced at f0, we

observe that this peak is not present. This suggests that under the

conditions of this mild harmonic forcing, the natural initial nonlinear

phase coupling between the fundamental and subharmonic modes has been

impeded.

At x/D - .32 in Figure 37, the high peak 1 in 0upp in the unforced

jet indicates the feedback of energy at the fundamental mode frequency

to the lip, again consistent with the lower Reynolds number case. The

broad diagonal shape of this peak for the jet forced at f0 however

suggests that the frequency fed back to the lip in this case is phase

icked to a broad range of near-subharmonic frequencies. Such

interactions would produce the broad peak in the autospectrum at the

subharmonic frequency seen at this x/D in this case. Also observed in

the autospectral are the discreet side-band modes to the fundamental in

the forced case. The interaction to produce these is seen by the three

peaks in Pupp centered at the fundamental frequency on the CBC abscissa

and aligned to the ordinate frequency of approximately 160 Hz. The 160

Hz frequency may be fundamentally important since it corresponds to a

Strouhal number, fD/Uj - 0.4, which is value generally associated with

the jet column mode (Ho and Huerre, 1984).

By x/D - .45 in Figure 38, the high value of peak 1 in 0ppu in the
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forced jet indicates that the fundamental and subharmonic modes have

achieved a concentrated phase locking, comparable to the unforced jet.

This subharmonic is fed back and strongly felt at the lip. There also

remains some weak nonlinear coupling associated with the fundamental

mode side-bands.

The effect of forcing the jet at a frequency 25% higher than the

natural f0 is depicted in Figure 39. This is shown in 39a at the

x-position of the beginning of enhanced growth of the 5/llf0 mode which

was seen from Figure 19. In this case, we now observe a high

organization of the jet with strongly coherent nonlinear interactions.

Although the linear coherence of the instability modes for the jet

forced at f is comparable, a factor of two greater cross-bicoherence

levels exists for this 2500 Hz forced condition, demonstrating a much

stronger nonlinear phase-locking of these modes in this instance. The

interactions involving the 5/lf 0 mode are apparent in this figure as

the band of contour lines at the frequency of 1136 Hz. The source of

the non-exact subharmonic is likely a result of the feedback mechanism

which acts to select the closest subharmonic frequency that also gives

an integer number of wave lengths over the distance from the point of

pairing back to the jet lip. This mode interacts with a multitude of

other modes to transfer energy to both higher and lower frequencies in

discreet fashion to fill the spectrum. The 1/lif0 mode although being

close to, is destinguishable from the 160 Hz mode seen in the previous

forced case.

Further downstream near the location of energy saturation of

the 5/l1f 0 mode, the strong nonlinear phase-locking persists. This

can be seen in the Pppu distribution in Figure 39b. At this

location, the linear coherence, rup, of the forced f0 and interacted
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5/l1f 0 and 1/lif modes are also still quite high. The large value of

0ppu at the frequency intersection of 5/11f0 and 1/lifO in the

pressure signals suggests that the 6/l1f0 mode in the velocity fluctua-

tions is a product of that summed interaction. This is also consistent

with the insignificant level of the linear coherence at the 6/11f 0

frequency.

VI. Discussion

VI.l Pairing Process and Feedback

In the initial region of the jet shear layer, up to four

wavelengths of the fundamental mode, the axisymmetric and subharmonic

modes grow exponentially in amplitude, evolve, and interact, leading to

the formation of vortical structures and finally pairing. Vortex

formation and pairing were observed to result in relatively rapid

changes in the streamwise growth of the shear layer, and to provide

effective sites for downstream influence of the flow on the unsteady

pressure field at the jet exit lip.

At the lip of the jet, a degree of nonlinear phase locking between

the fundamental axisymmetric and subharmonic modes was found to

initially exist. This was seen from the auto-bicoherence distribution

in Figure 33. Nonlinear phase locking also existed between other

frequencies in the pressure field at the lip as a result of sum and

difference interactions with the longer wavelength f0/2 and (fl-f 0)

modes. These represented a natural tuned self-forced condition to the

initial shear layer growth.

Within the first approximately two fundamental wavelengths

downstream of the jet exit, the fundamental and subharmonic modes grow

independently. Their initial amplitudes are commensurated with the
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degree of tuned self-forcing as well as other competing background

disturbances. Evidence of their independent growth comes from the 0

difference in their phase velocities (Figure 10), which makes energy

transfer inefficient. The lack of intercomponent mode locking was

evident in the low levels of cross-bicoherence in this early region at

the top of Figure 35.

In this early stage, the fundameltal mode is best characterized by

a wave representation with a double peaked eigenfunction modulus, the

fluctuation minimum between these corresponded to the location of a 180

degree phase shift in the eigenfunction phase. Prior to vortex

formation, there existed virtually no growth in the momentum thickness

downstream,and the mean profile closely followed a hyperbolic tangent

distribution. When you combine these characteristics, one can see the

origin of agreement to analysis with linear, spatial, inviscid, parallel

stability theory.

At the end of this region (two fundamental wavelengths from the jet

exit), the secondary enhanced growth of the subharmonic begins. This

was marked by a reduction of the phase velocity of the subharmonic to

match that of the fundamental. This change was seen as the rapid shift

in the subharmonic eigenfunction phase at x/D - 0.3 in Figure 6

requiring less than a quarter of a subharmonic wavelength to make the

transition.

In the process of changing phase velocities, the linear coherence,

r , is low. This would be expected since this statistic is a measure

of linear phase locking and the subharmonic phase development is

changing at this location. In contrast to this, the high

cross-bicoherence, ,ppu for a fundamental/subharmonic interaction

indicates a strong degree of nonlinear phase locking between these
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modes. When combined with the lower Pupp at this location this

documents phase locking between the subharmonic in the pressure field at

the lip, and the fundamental in the velocity field at this x/D. We

interpret this as the upstream influence of the pressure field at the

lip to aid in adjusting the phase velocity of the subharmonic mode,

satisfying the resonance condition and leading to its enhanced growth.

The region of influence of the lip is fairly localized, and does

not extend far downstream of this point. This was evident by the

decreasing Pppu and increasing Puup past x/D - 0.3 in Figure 35, prior

to fundamental mode saturation.

Fundamental mode saturation occurs one wavelength downstream of

this point (three wavelengths from the jet exit). This process is

associated with the first roll-up of the shear layer into a vortex ring.

The high Puup for a fundamental/subharmonic interaction indicates a

strong degree of nonlinear phase locking between these modes which is

associated with this event. The direction of the interaction is

inferred from the simultaneously low ppu" These indicate a nonlinear

phase locking between the subharmonic in the velocity, and the

fundamental in the pressure (at the lip). We interpret this to result

from feedback of pure tone acoustic disturbances at the fundamental

frequency from the point of vortex roll-up back to the jet lip. This

feedback was indicated by the light arrow in Figure 35. The energy in

pressure fluctuations at the fundamental frequency at the lip is however

relatively small, suggesting that the downstream influence of this mode

is weak.

The subharmonic mode continues to grow exponentially for another

fundamental wavelength downstream of the point of fundamental mode

saturation, four wavelengths from the lip. Since the beginning of its
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secondary growth, it had closely grown at the rate of the fundamental.

When the subharmonic mode saturates a nearly perfect nonlinear phase

locking existed for the 6ppu fundamental/subharmonic interaction. When

combined with the relatively low upp, this indicated that the phase

locking occurred between the fundamental in the velocity and the

subharmonic in the pressure (at the lip). We interpret this to result

from acoustic feedback at the subharmonic frequency produced by the

energetic process of vortex pairing which is associated with this energy

maximum. This process was indicated by the bold arrow pointing in the

upstream direction in Figure 35. A larger, dominant peak in the

pressure spectrum at the subharmonic frequency indicates that the

downstream influence of this mode is relatively strong. The dominance

of this mode is similarly seen in the spectral peak histogram of MEM

spectral estimates in Figure 24 and 26. The influence is especially

strong in the 42,000 Reynolds number jet for which the final frequency

coupling existed. However, the importance of subharmonic mode feedback

is not restricted to only this extra special condition.

VI. 2 Nonaxisymmetric Modes

Analysis by Michalke (1971) and Mattingly and Chang (1974) had

indicated that the initial region of the jet is equally unstable to both

axisymmetric and non-axisymmetric (helical) modes. In a previous

experiment using the same facility as in this investigation; Drubka

(1981) had documented the m - ± 1 helical mode in addition to the

fundamental axisymmetric modes. Although his observations were based on

long-time averaged spectral estimates, he speculated that the initial

region alternates between these fundamental states. In the present

experiment, long-time averaged spectra brought out the existence of

these two modes. The streamwise frequency of these and the dependence



159

on Reynolds number was found to be in agreement with Drubka's values.

Short-time mode analysis was performed using maximum entropy spectral

estimates in order to observe their temporal behavior to answer Drubka's

speculation.

Mode detection was based on the existence of spectral peaks in the

short-time estimates at the frequencies for the fundamental axisymmetric

and m - ± 1 helical modes, respectively. The temporal evaluation of

these modes was seen in a qualitative sense in Figures 21 and 22 for the

natural jets. These indicated a lack of coexistence and apparent

nondeterministic switching between fundamental states. This was

quantified in spectral peak occurrence distributions of the type shown

in Figures 30 and 31 and in the cross-occurrence distributions in Figure

32.

The spatial exponential growth rate of the helical mode was found

to be the same as that of the axisymmetric mode, in agreement with

theory. The average initial amplitudes close to the jet exit were also

very comparable. In addition, their streamwise extent of constant

exponential growth was found to be quite comparable so that their points

of energy saturation closely coincided. Presumably then, the dominant

mode at any instant is likely to be the one which had the highest

initial amplitude forcing due to randomly arriving axisymmetric or

nonaxisymmetric disturbances at the jet lip. When the jet was disturbed

by far-field harmonic acoustic disturbances which excite axisymmetric

modes, the existence of the helical mode was effectively suppressed. In

the case of nonaxisymmetric modes, a disturbance which produces a 180

degree azimuthal phase difference around the exit lip would be suitable

to produce a m + 1 helical mode.
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One might expect that the percentage of occurrence of each of these

fundamental modes would be constant valued throughout the jet initial

region. The spectral peak occurrence distributions in Figures 30 and 31

show that this is in fact not the case. This suggests that these modes

can overtake and suppress each other through interactions further

downstream. For example, the occurrence of the helical mode was

observed to reach its maximum at the x/D location associated with the

beginning of subharmonic resonance. At this location, the occurrence of

the subharmonic is a minimum.

The percentage of time that both the fundamental axisymmetric and

helical modes coexist was found to be negligibly small. The only

exception was at the beginning of subharmonic resonance where the

percentage of their simultaneous occurrence reached approximately four

percent. It was only in this region that the cross-bicoherence showed a

nonlinear phase locking between the axisymmetric subharmonic and helical

modes to produce the difference mode f1 - 1/2f 0. The otherwise general

anti-correlation between the occurrence of these two fundamental modes

suggests that each might be a basin of attraction which suppresses the

existence of the other.

Given this physical picture for the alternate existence of these

two fundamental modes, we are left in somewhat of a quandary as to the

origin of the difference mode, f 1 f That is, how could these two

modes interact to produce their difference mode if they do not coexist?

We have observed the existence of this mode in the pressure and

velocity time series. Along with the subharmonic mode, it dominates the

lip pressure field to produce a number of nonlinearily phase locked

modes formed from sum and difference interactions, which provide a level

of initial jet self-forcing. The spatial amplification of the f1 - f0
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mode exhibits two constant exponential growth regions, similar to the

subharmonic. The x/D location of the change in exponential growth is at

the same point as that of subharmonic. Also, their spatial growth rates

are nearly the same. Since the difference frequency is far from the

region of maximum linear amplification, this high growth attests to the

nonlinear energy transfer to this mode. Since the spatial growth mimics

that of the axisymmetric subharmonic, we expect that these two modes are

related. If we look to the auto-bicoherence, ppp, at the lip of the

jet in Figure 33, peak 2 documents a nonlinear phase locking between the

subharmonic and difference mode in the form 1/2f0 + f1 - f - f 1 i/2f0

This interacted mode in the unsteady pressure is observed to interact

with the subharmonic in the unsteady pressure in peak 6 of the ppu

in Figure 34, to produce a nonlinear phase locking with the helical

mode at fl in the velocity at the beginning of secondary exponential

growth. Therefore, we do observe a close link between the f - f and

f0/2 modes which originates in the fed back unsteady pressures at the

jet lip, and through the lip influence, has a downstream effect to

produce a nonlinear phase locking between f0/2 and fl" Recall that the

only point of nonzero coexistence of the f and f modes was at the

location of the emergence of peak 6 in Figure 34, which was also the

location of the occurrence maximum of the f mode.

When the jet was excited by far-field acoustic pure tones at the

axisymmetric mode frequency, f0 the helical mode at frequency f1 is

effectively suppressed. But, was it eliminated totally? Examining

Figure 31 (b) shows some traces of occurrence of the f mode (dotted)

which still contain the same x/D trends as in the natural case, shown in

the plot above it. Remember that the acoustic excitation was not

meant to totally overwhelm the jet but rather to favor certain modes.
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The overall occurrence levcls of the f - f0 mode had been reduced

by the axisymmetric excitation. This is seen both in the pressure field

at the jet lip as well by comparing the distributions in Figure 31a and

b (dash-dotted). The reduction is not linearily proportional to the

lowering of the f occurrence. However, since the growth of the f - f0

mode is also nonlinearily linked to the f0/2 mode, which has been

pointed out is resonantly locked with the f mode, even a trace amount

of energy at fI could result in a disproportionate energy transfer into

the helical mode at the difference frequency. Recall, that the

occurrence statistics make no distinction on the amplitude of these

modes, only on their existence in the time series. In fact, the

amplitude of the f1 - f0 mode, relative to f0, is significantly less

with axisymmetric mode excitation.

VI.3 Effect of Initial Forcing

In addition to the pure-tone acoustic excitaLion at f0' acoustic

forcing away from the natural axisymmetric mode and broad-band core

disturbances had been imposed to study their effects on the initial

development of unstable modes in the jet. In the previous section the

effect of axisymmetric mode forcing on the helical modes was discussed.

A sensitive and consistent indicator of the x-development of the

unstable modes is the mode occurrence distributions such as in Figure

31. We therefore look to these to show some of the effects of the weak

acoustic excitation. In terms of the axisymmetric modes, the forcing at

f0 gave an expected initial increase in the occurrence of that mode near

the lip. The 1L . of occurrence, however, gradually decreased towards

the unforced behavior by the location of fundamental mode saturation.

Recall that the level of forcing was only 0.05 percent of the dynamic

iS
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pressure which would be of the same order as the natural feedback

levels.

We observe in Figure 31a and b that the forcing at f0 had altered

the occurrence development of the subharmonic mode (solid). In particu-

lar upstream of the location for the beginning of resonant subharmonic

growth (x/D - 0.25), the occurrence levels are significantly lower for

that mode. In the region of secondary growth, the occurrence of the

subharmonic increases at a slower rate and reaches a maximum further

downstream. Since this maximum is associated with vortex pairing, the

low amplitude forcing at f0 appears to have slightly retarded this

process.

To understand this effect better, we look to the fundamental/

subharmonic interactions brought out by the CBC in Figures 36 through

38. Recall that the x/D locations for these three figures corresponded

to the fundamentally important positions: the beginning of subharmonic

resonance aided by the upstream influence of the unsteady pressures at

the lip; the saturation of the fundamental mode which provides weak

feedback at f0 to the lip; and the saturation of the subharmonic mode

which provides strong feedback at f0/2 to the lip. By interpreting

these figures, the low amplitude forcing at f0 has diminished the

upstream influence of the lip by decoupling the nonlinear phase locking

between the f0 and f0/2 modes. In essence, in this initial region,

there are two frequency sources feeding the unsteady pressure field at

the lip. The first is due to the acoustic input from sine generator and

speaker. The second is due to the response of the jet and the

closed-loop feedback at f0/2. These two frequencies, being derived from

separate sources are therefore not phase locked.
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We can observe some subtle effects of the lack of initial phase

locking of these two modes. For example, in the beginning of secondary

subharmonic growth in Figure 16. Generally, we have observed a sharp

change in subharmonic grow which was accompanied by a rapid change of

phase velocity of the subharmonic to match that of the fundamental.

With the mild forcing at f0' we observe a much more gradual change in

growth of f0/2, which is also delayed relative to the downstream

development of fundamental. This can also be traced to a reduction in

the local spreading rate of the jet between x/D - 0.35 and 0.45 in

Figure 11, which is in the region of secondary subharmonic growth.

Past the point of pairing, the spreading rate of the jet forced at f0

has overcome this early reduction and slightly surpasses that of the

natural jet. This behavior might be due to the observed additional

nonlinear phase locking with the column mode (160 Hz) that appeared

only in this specific forced case.

A recent paper by Monkewitz (1988) predicts subarmonic resonance on

the basis of the fundamental mode achieving a minimum amplitude,

upf/Uj - 0.015. Based on this, we can compare the amplitudes of the

fundamental axisymmetric modes at the x-position of first enhanced

subharmonic growth (x r/D) for the different cases examined here. In the

unforced jet, 1L condition, at both Reynolds numbers, the maximum

streamwise velocity fluctuation levels seen from Figures 8 and 14 was

roughly the same and equal to 0.0003. This of course is considerably

below that predicted by Monkewitz, but in experiments, the absolute

levels are somewhat ambiguous since they vary with the spectral band

width. For example, Monkewitz's good agreement to Drubka's Re-42,000

data is two orders of magnitude off when the amplitudes are converted to
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the standard 1 Hz band width, as we had done in the comparison in Figure

7.

Therefore, rather than compare absolute levels, we can look to

effects of different initial conditions, most noteably between unforced

and forced jets. Specifically, this involves our jet at Re-70,O00, with

the spatial growth curves seen in Figures 14 and 16. In this

comparison, for the forced jet, we observe an almost order of magnitude

increase in the threshold level of the fundamental mode at the

x-position of secondary subharmonic growth. Since we have interpreted

the effect of our mild forcing to disrupt the natural feedback mechanism

and delay subharmonic resonance, this result seems to support that

mechanism over one strictly based on amplitude alone.

Forcing the jet at a frequency 25 percent higher than the natural

selected f0 resulted in a more strongly organized jet with strong

feedback at 1/lif 0 and 5/11f0 frequencies. The initially shorter

wavelength fundamental frequency and strong resonant interaction with

the 5/llf0 mode resulted in faster spreading in this case.

The nonexact 5/11f0 "subharmonic" in this case was likely selected

by the flow in order to satisfy a constraint imposed by feedback that

there be an integer number of wavelengths from the feedback source, in

this case the x/D of pairing, back to the lip of the jet. This

selection resulted in a much stronger nonlinear phase locking and a high

degree of organization of a broad band of discreet sum and difference

modes that was not apparent with weak harmonic forcing. This exercise

demonstrates an efficient means of control of the early jet

instabilities by making use of the natural upstream influence of the lip

and the downstream influence of related modes which are associated with

the energetic motions of vortex formation and successive pairings.
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Observations such as resonant mode selection and harmonic spectra

indicate that a convectively unstable flow (a cold axisymmetric jet) in

the presence of feedback appears to sharp some of the features related

to absolutely unstable flows. Such a distinction has profound

implications with respect to the possible existence of deterministic

chaos in jets as well as issues of flow controllability.

VII. Conclusions

The results documented the existence and exponential growth of the

two fundamental modes in the axisymmetric jet shear layer, namely the

axisymmetry and m - ± I helical modes. In the case of the former, a

parametric interaction between it and its subharmonic was found to exist

and to be an important factor in the early development of the jet. This

interaction was marked by a matching of their phase velocities,

requiring a decrease in the phase velocity of the subharmonic, the

resonant exchange of energy from the fundamental mode to the

subharmonic, and a resulting enhanced exponential growth of the

subharmonic mode leading to large amplitudes and eventual energy

saturation. A key factor of this process was the recursive feedback of

energy from the sites of the first vortex rollup and vortex pairing.

These acted to produce a self-forced phase locking of the initial

fundamental and subharmonic modes which later led to the early resonant

growth of the subharmonic mode, within two fundamental axisymmetric

wavelengths. This resonant feedback mechanism gives the jet some of the

features attributed to absolutely unstable flows, which may have

profound implications on their controllability.

Underlying the resonant organization seen in the axisymmetric modes

was the development and growth of the m - ± 1 helical modes. Short-time
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spectral estimates had been used to document the temporal evolution of

the helical and axisymmetric modes. These indicated a lack of

coexistence and apparent nondeterministic switching between these two

fundamental states. At any time, the dominant mode was likely to be the

one with the higher initial forcing level due to randomly arriving

axisymmetric or nonaxisymmetric disturbances at the jet lip. With this

scenario in mind, a low dimensional temporal model based on the

competition between these two modes may be useful to capture the early

random nature which we attributed to spectral broadening at these mode

frequencies in the initial jet exit region.
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Appendix A.

Maximum Entropy Spectral Estimates

Recently spectral estimations based on the Maximum Entropy Method

(MEM) have been adopted at IIT in the analysis of data series from

unsteady fluid dynamics experiments. The main feature of this method is

that it allows the determination of spectra for exceedingly short time

series where methods based on DFT fail to produce accurate results.

Extensive documentation of the characteristics and usage of this method

has been done by us on time series derived in this and other fluid

flows. The following discussion is meant to provide an overview of the

theoretical basis for the method and to document its use in this study.

The maximum entropy time series is determined to be the one in

which the entropy, E(S), of the power spectrum, S(w), defined as shown

below,

E(S) _n log S(w) d, (1)
-A

n

is a maximum, under the constraint that the spectrum also be con-

sistent with the first M+1 measured lags of the autocorrelation

function, R .k The autocorrelation is defined to be the inverse

Fourier transform of the power spectrum, namely

Wn

Rk - S(w) e dt (-M 5 k 5 M) (2)

n

Here, At is the time increment, k is a discrete time index, w is the

angular frequency, wn is the angular Nyquist frequency, and i is the

square root of negative one.

Defining the Lagrange multiplier A the solution for S(w) which

maximizes this variational problem is
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01

S(w) - (3)
* M
Z A e

k--M

where the A's satisfy the constraint equation 2.

The traditional transform notation is obtained by setting

iWAt

z - e (4)
where

-M M
S(z) ... +RMz + ... + R0 + ... + RMz +

and Rol R1  ....RM are known M+l auto-correlation coefficients. The

power spectrum, S(w), is related to S(z) by the z transform of the

autocorrelation function namely,

S(z) <-> (z - e iwAt (5)

In factored form,

2

S(z) M (6)

AM(z) AM(z I)

where

AM(z) + alz + ... + aMz (7)

2is a (M+l) length prediction error filter with variance aM Expressing

equation 6 in the frequency domain and combining it with equation 3, one

obtains the MEM spectral estimate

2
S) - 1M (8)

M iWkAt 2
Z A k e

k--M

The right-hand side of the equality in equation 8 can also be found

by modeling the time series as an auto-regressive series of order M.

Such a model therefore maximizes the entropy in the time series.

The problem that remains is to compute the prediction-error

0Q
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filter coefficients AM(w), and to determine of the "best" order, M, for

the auto-regressiva model. The approach to the first part is due to

Burg (1967) who suggested minimizing the average of the sum of both the

mean square prediction and hindsight errors, P1 , to find the first

coefficient all. For an N-point data series, that quantity is defined

as

12 2 ()

PI _ (x i+l+a11Xi) + (xi+a1 xi+ I )2(N-1) i- 1

The remaining coefficients are then found from the Toeplitz recursion

formula

aM,s " aM-ls + aM,M aM-l,M-s s - i .... M-I (10)

The order, M, of the prediction-error filter remains to be the key

parameter in calculating the most appropriate spectrum. Many empirical

studies utilizing synthetic data having known spectral content have bten

conducted in order to develop measures of determining the proper filter

length. Reisenthel and Corke (1983) have studied a number of these and

identified four regions of behavior with increasing filter length, M. In

the first region, A, with the shortest filter lengths, only a smooth

envelope of the distribution having no spectral peaks is obtained. In

the next region, B, which starts from the end of the region A, with

increased filter length, the spectral peaks that emerge have the correct

amplitude and frequency, however, some combining of closely neighboring

peaks may occur at lower frequencies. In region C all of the spectral

peaks are identified, however, their amplitudes may not be correct.

Finally in region D peak splitting is observed to occur, leading to

incorrect spectral estimations.

These criteria were used to determine the proper filter length for

the analysis of the data series in this study. In its approach here the
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method was usud to detect the existence of the various modes and to

follow their spatial and temporal evolution, without interest in their

amplitude. Therefore a prediction-error filter length was chosen which

placed us within the above described region C. Due to the nature of the

time series, all of the selection criteria had shown a broad C region

for all of our flow cases.

0

00
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Appendix B.

Cross-Bicoherence

The cross-bicoherence is a measure of the nonlinear phase locking

between frequencies in three time series. In a general sense, these time

series are represented as u1 (t), u2 (t), and u3 (t). For simplicity these

are not shown to be a function of their spatial position. The Fourier

transforms of these time series are defined as

u.(t) - S ui(,o) et dw i - 1, 2, 3 (11)

u.(w) - 1/(2w) ui(t) e dt (12)

where (-) denotes the transformed function in the wave number do.'in, W

is the wave number, and . is the square root of negative one.

The first three statistical moments of these time series are given

as:

the first order,

R. - < u.(t) > i - 1, 2, 3 (13)

the second order,

R ij() - < ui(t) uj(t+r) > i, j - 1, 2, 3 (14)

and the third order,

Rijk(rl, 2  < u (t)1 u (t+r 1 ) uk(t+r 2 ) >

i, j, k - 1, 2, 3 (15)

where (< >) is the realizations ensemble average, and r is a time

delay.

The first order moment is the mean of the time series. The second

order moment is the correlation. The correlation is a measure of the

linear interaction between quantities in the two time series. The

correlation can also be determined from the Fourier transform of the

time series, namely
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Rij (r) - 1/(21) ) < ui(M) uj(w) > e dw (16)

where (*) denotes the complex conjugate. The product < u.( ) u(W) > is

the cross-spectrum between ui(t) and u.(t).

The third order moment is a measure of the linear and quadratic

interaction between the three time series, as seen in equation 15. In

order to better appreciate the origin of the bispectrum it is helpful to

derive the relation between the third order moment and the Fourier

transform of the time series. The Fourier transform of Rijk is

Rijk( l,W2) - i/(4w2) < ui(t) u.(t+r1 ) uk(t+r2 ) >

e 1 1  
2 2 dr dr2  (17)

Notice that Rijk is a function of two wave numbers 1 and 2"

In the above equation, replacing the time series by their Fourier

integral transform, as defined in equation 12, and interchanging the

order of integration and the ensemble average, the following equation

can be derived,

R ( 2 /(4w < ui() u(') Uw"i) >

ijk 1' 2~ /4k) ) (

e "- W l1 rl'-LU)2 r2  eLwt+Lw (t+.rl1)+tW"(t+r 2 )

e e

dw dw' dw" dr dr (18)
1 2

By taking advantage of Kronecker delta function relations
OD i( l---W2)r

1/(2m) e dr - S(w1 -W') (19)

and

S f(w') (w-w') dw' - f(w) (20)

equation 18 simplifies to
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F 
0

Rijk(l' 2) C -
< ui(j) uj(Cl) uk(w2) >

e (W+Wl+W2 )t dw (21)

With the assumption that the series is stationary, rigorous algebra

is needed to simplify the above equation. However, in order to avoid

these steps, a shorter approach can been adopted. Knowing that the

result of the above integral is not a function of time, which requires

+w1i+ 2 to be equal to zero, the following relation is derived

Rijk(Wl,c 2 ) < ui(w) u(Wl) u (W2) > 6(w+wl+W 2) (22)

Defining u (w) as the complex conjugate of u(w) then,

Rijk(ol,w 2) = - (Wl) u ( 2 ) uk(wl+w2) > (23)

The function Rijk (Wlw 2) is the cross-bispectrum which will be

denoted here as Bijk (W1, 2).

What is the physical interpretation of this quantity? The

cross-bispectrum is a measure of the energy transfer resulting from the

quadratic interaction of two wave numbers in two time series to produce

their sum or difference wave number in a third time series. In the

present experiment which dealt with resonant mode interactions, it was

more instructive to measure the level of the nonlinear phase-locking

rather than the amount of energy transfer. Therefore, the normalized

cross-bispectrum, or cross-bicoherence, was utilized.

The cross-bicoherence (CBC) is defined as

ijk(lw2) -IBik( 22 (24)

ijl' <Iui(col)1 2 Juj(W2)1 2> <u(W3)1 2>

where i, J, and k refer to the time series with wave numbers w,, w2' and

w3' respectively, and (I I) is the modulus of the component. These wave
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numbers are related to each other such that w1W2+W3-0. In the

* experimenc in the jet, the time series were the streamwise velocity

fluctuations, acquired at different spatial locations in the shear

layer, u(x,r,t), and the simultaneous pressure fluctuations at the lip

* of the jet, p(r,t). The subscripts i, j and k refer to these two

measured time series. For the case when i, j, and k are the same,

ijk(w, w2) will be symmetric with respect to wland w , and will be

* referred to as the auto-bicoherence (ABC).

In the above equation, the calculation of the quantity

2- 2
<i (W ) JI (W 2 (25)

requires considerable computer time and memory storage for respectively

sized transforms. Therefore, it is convenient to replace it by the

quantity

0
<Jui (W 1)2> <uj(W 2)12> (26)

To justify this substitution, several tests had been conducted on

synthetic data having a known cross-bicoherence. In order to simulate

the types of time series we could expect from this experiment various

levels of random noise were also superposed on the tested time series.

It was found that for a large enough number of realization averages, the

difference between these two quantities was small. Therefore making

this simplification, the final form of the cross-bicoherence used was

Pijk (WW2) - IBijk(Wl1w 2)1 2 (27)
<#ijk\(W 1i )>(Wl) J2> < 2)12> <Iuk(w 3)I 2>

From the Schwarz inequality, the cross-bicoherence falls between

the values of zero and one. When, from realization to realization the

degree of triple phase-locking
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ei(W 1)+ )2)- k(W 3) (28)

is high, the CBC will have a value close to one. Here 0 i(W )

is the instantaneous circular phase angle of ui(Wl). The maximum level

of the CBC estimate is however dependent on the signal-to-noise

ratio of the data series. When no phase-locking exists it has a value

of zero.
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The dynamics of low initial disturbance turbulent jets
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Recent experimental results in axisymmetric free jets are discussed with an emphasis on the
dynamics of their self-forced states. The role pL, ed by the initial shear-layer instabilities and
their coupling with subsequent jet instabilities is examined to reveal key mechanisms and
scaling relations.

I. INTRODUCTION subharmonic frequencies affect the downstream flow devel-
A. Background opment significantly, as discussed recently by Monkewitz.6

The early stages of shear-layer amplification are well Cohen and Wygnanski7 showed that, in addition, when the
predicted by linear stability theory. The mean profile of a jet subharmonic is a helical mode, this interaction can lead to
is inviscidly unstable to small disturbances, which grow ex- explosive growth, in accordance with Ahmadi-Moghadam's
ponentially over short distances from the lip. There has been theoretical predictions.8

some historical confusion as to which theory (spatial or tem- One of the main differences between shear layers and
poral) was relevant: Whereas the shape of the eigenmodes jets concerns the fact that jet flows are characterized by two
consistently appeared to be better predicted by the spatial length scales. While the initial shear-layer instability scales
theory, the experimentally measured streamwise growth on local momentum thickness, the structure of the jet past
rates often agreed better with temporal theory. Further in- the potential core is believed to scale with diameter. Crow
sight into the relevance of spatial or temporal approaches and Champagne9 used large amplitude periodic surging of a
was provided by Monkewitz and Huerre,' in the context of jet and discovered a "large-scale orderly wave structure"
small velocity ratio asymptotics (i.e., by considering the in- that dominated the entire jet column. This so-called "pre-
fluence of the velocity ratio of the two streams on the stabil- ferred mode" of thejet was found to scale with diameter. The
ity properties of the shear layer). The maximally amplified maximum amplification of this mode was obtained for StD
frequency calculated from the Rayleigh equation applied to = 0.3, independently of exit velocity, and had a wavelength
a hyperbolic tangent profile was found to be St6 = 0.017 of 2.4 jet diameters. Later, Hussain and Zaman' 0 provided a
using spatial stability for various velocity ratios.2 Later, detailed spatial documentation of the large-scale structure
Huerre and Monkewitz3 used a more general approach by associated with the preferred mode. This coherent axisym-
analyzing the behavior of the impulse response of a family of metric structure was found to be most dominant at the end of
parallel (hyperbolic tangent) shear layers, letting both fre- the potential core (X/D = 4), and the frequency scaling ob-
quency and wavenumber be complex. In particular, they de- tained by Crow and Champagne9 was confirmed. These au-
termined that when the velocity ratio is smaller than 1.315, thors also showed that the preferred mode was accompanied
the shear layer is convectively unstable, and hence that if by a large increase in jet spreading and sound production.
disturbances were continually fed to the system at a given The jet preferred mode was described as a "latent" orderly
streamwise location (as is the case for acoustically forced structure continually excited by background disturbances.
shear layers with receptivity at separation), spatial analysis The interaction between shear layer mode and jet col-
would be the one that is physically meaningful. umn mode was demonstrated by Kibens, " who managed to

Because the momentum thickness grows with down- force the jet column mode using acoustic shear-layer excita-
stream distance, the shear layer instability characteristics tion, such that three successive vortex pairings were ob-
change with X. Analyses incorporating these nonparallel ef- served at fixed streamwise locations. The last of these pairing
fects have considered the integrated growth rates of distur- events coincided with the end of the potential core, provid-
bances up to the point of neutral stability. Weakly nonlinear ing special coupling conditions with the preferred mode. The
aspects have been analyzed from small perturbations around "passage" frequency was halved at each pairing interaction
the neutral point. In particular, the increased growth of a and the entire jet column was subjected to axisymmetric
subharmonic frequency leading to pairing has been success- large-scale pulsation at one-eighth the excitation frequency.
fully accounted for by Kelly's subharmonic resonance The coupling between the initial shear-layer instability and
mechanism.4 Drubka 5 showed that a subharmonic reso- the final jet structure is presumably optimal for an integer
nance takes place in the jet at approximately two fundamen- number of pairings within the potential core. In the natural
tal wavelengths from the lip. Many investigators have recog- jet, this condition may only be achieved for certain Reynolds
nized the importance of this mechanism in describing the numbers forming a geometric sequence. Drubka5 was the
sequence of paiiing interactions. In particular, the initial rel- first to document a natural coupling, for sufficiently low
ative amplitudes and phases, especially, of fundamental and background disturbances. Kibens concluded that shear lay-
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er and jet column modes were two independent but interact- number to be maintained within one percent over extensive
ing mechanisms." Under resonant conditions, spectacular periods of time. Its characteristics have been documented
changes in the organization of the flow and the spectral con- extensively by Tan-Atichat. " Because of the low turbulence
tent of the radiated sound were observed, intensity characteristics of the jet (less than 0.05%) it is

Of importance (among the dominant modes of the jet), possible to simulate the effect of increasingly higher free-
however, is the helical (m = ± 1) instability mode, which is stream disturbance levels. These laminar exit boundary lay-
initially approximately equally amplified as the fundamental er configurations are referred to as 1 L, 2L, and 3L, and were
axisymmetric mode. Drubka showed experimentally the characterized by core turbulence intensity levels of 0.05%,
existence of a helical mode having a Strouhal number 20% 0.11%, and 0.16%, respectively. A trip could also be used to
higher than that of the fundamental axisymmetric mode. make the exit boundary layer turbulent ( IT case). Unless
Shakib"2 used the maximum entropy method to document otherwise specified, the default jet configuration is the I L
the switching between helical and axisymmetric modes, and case throughout this paper. Finally, a 12 in. speaker placed
concluded that the existence of one effectively suppressed 70 diameters downstream of the jet exit plane provided the
the presence of the other. Although a satisfactory explana- possibility of low-level axisymmetric acoustic excitation of
tion of the origin of the temporal switching between these the initial shear layer.
modes has not yet been put forth, it is believed that consider-
ations of the continuing nonlinear competition between II. DISCUSSION
these few dominant modes (including subharmonic and jet The detailed documentation of the experimental setup
preferred modes), coupled with feedback to the lip, may pro- and results presented here, are contained in the Ph.D. theses
vide significant insight into the deterministic nonlinear dy- by Drubka5 and Reisenthel.' 4 In order to characterize the
namics ofjets. streamwise flow development of ajet it is customary to estab-

This paper presents experimental data acquired in a lish the centerline decay of the mean velocity. This measure-
well-documented, very low disturbance axisymmetric jet fa- ment is presented in Fig. 1, where it is compared to previous
cility. The characteristics of the unforced initial shear-layer data obtained at Reynolds numbers comparable to the high-
modes are shown to conform closely to spatial linear stability est ones used here. This type of data is useful in characteriz-
theory. Clear evidence is shown in support of a natural sub- ing the size of the initial region of the jet as well as the rate of
harmonic resonance mechanism taking place at two funda- entrainment beyond that region.
mental axisymmetric wavelengths from separation. Most
importantly, the role of nonaxisymmetric disturbances in A. Profile self-similarity
the weak coupling between initial shear-layer and final jet
instabilities is discussed and contrasted to the case of artifi- The variation of the jet shear-layer momentum thick-
cial excitation of the jet "preferred mode." ness 0 with Reynolds number is examined in Fig. 2. As can

be seen from the excellent collapse of the data, the shear-
B. The I.I.T. jet facility layer profiles display obvious self-similarity over a large

range of Reynolds numbers when properly normalized by
The experiments described in the present paper were all the local momentum thickness 0. The value of 0 is calculated

conducted in a low turbulence intensity 5 cm axisymmetric by truncating the integral of the momentum at the location
air jet facility. Two jet nozzles (fifth order and matched cu- where the velocity is 10% of the maximum (core) velocity.
bic) of 9:1 area ratio were used in this investigation. The This operational definition of the momentum thickness was
nozzle is attached to the 15 cm diam circular test section of introduced to reduce the "rectification error" that results
an open circuit wind tunnel. The wind tunnel is powered by a from hot-wire measurement, particularly at the outer edge of
regulated compressed air system that allows the Reynolds the shear layer, where reverse flow is likely to occur. All

1.2

10 0Re = 39000
1.0Re = 05o

Re = 45000

09 Re Re = 53000
a 39.*000 80.1R=20
0 42.000 8Re =6200

0 in0 
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FIG. I. Effect of Reynolds number on mean streamwise velocity decay FIG. 2. Self-similarity of mean velocity profiles with Reynolds number at
along the jet centerline. X/D = 0.07.
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The variation of momentum thickness with down-
FIG. 3. Self-similarity of mean velocity profiles with downstream distance stream distance for the two Reynolds numbers presented in
at Re = 42 000 and 62 500. Fig. 3 is shown in Fig. 5. At each Reynolds number, three

downstream stations were considered, the first location cor-
responding to the closest practically reasonable position of

profiles in Fig. 2 were measured at a fixed downstream loca- the hot-wire probe (i.e., that avoided probe feedback). The
tion X/D = 0.07. The variation of momentum thickness two farther downstream locations, however, were designed
with downstream distance close to the lip is considered in to scale with the wavelength of the natural fundamental axi-
Figs. 3-5. Figure 3 illustrates profile self-similarity with re- symmetric instability mode of the jet at each Reynolds num-
spect to downstream distance at two Reynolds numbers ber. It is clear from the results of Fig. 5 that to a good degree
[42 000 (top) and 62 500 (bottom) 1. In each case, it is clear of approximation, the momentum thickness increases linear-
that profile self-similarity has been achieved for the two most ly with downstream distance, within the initial region close
downstream locations. However, there is a noticeable depar- to the lip. A least-squares fit was calculated at each Reynolds
ture from the self-similar profile at the earliest downstream number, yielding virtually identical slopes: 3e /
location (X ID = 0.07), with a naturally more pronounced 8X 0.005 12 at Re = 62 500, and M lMX = 0.005 14 at
departure in the case of longer wavelength shear-layer insta- Re = 42 000.
bility (lower Reynolds number). In Fig. 4 the quasilinear Figure 6 shows the variation of 9 with Reynolds num-
growth of the momentum thickness with downsteam dis- ber, atX/D = 0.07, for the range 39 000<Re<85 000. Ideal-
tance at Re = 42 000 is described. Of particular interest is ly, one expects the momentum thickness to be inversely pro-
the relative increase in 0 around X/D = 0.6, corresponding portional to ,--e. Consequently, a least-squares fit to the
to the energy saturation of the subharmonic axisymmetric data was calculated and gave 0= 33.151/, + 0.016

(mm) at X/D = 0.07 (the closeness of the fit to the data
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FIG. 6. Momentum thickness variation with Reynolds number at X1
FIG. 4. Development of jet momentum thickness at Re = 42 000. D = 0.07.
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.2 acoustic levels were deliberately chosen to be quite large 222

............. . ((74.9 dB and 78.4 dB at the lip, at the lower and higher
Reynolds number, respectively). As indicated in Fig. 7, a
4.9% increase in 0 was measured at Re = 62 500, whereas 0

' . remained practically constant at Re = 42 000. It should be
M4 kept in mind, however, that because the physical location of

", the measurement was fixed, the two Reynolds number cases0.2 .,-'.","'--- are not dynamically equivalent, since their wavelength ratio

(based on a constant normalized phase speed) is approxi-
(YY )12 o mately 1.7. Therefore the conditions at Re = 42 000 may be

more representative of true "initial" conditions. Hence the

t . (143 m (raft*) effect of forcing in the present experiments had very little
. .. , - (50 - (ftbWJ influence on the initial momentum thickness 0,.

*' B. Scaling of Initial axisymmetric mode
In cases where the boundary layer is laminar, the exit

OA boundary layer momentum thickness is inversely propor-

x&.o" tional to R (see discussion of Fig. 6). This result shows

. , . .......... 4 that in this case and when a linear instability mechanism is
. 3 -1 0 2 3 acting to select the most unstable mode (St, = const), the

(Y-Y, Y2 9 initial Strouhal frequency StD is proportional to the square

FIG. 7. Comparison of mean shear layer profiles at X/D = 0.07, under nat- root of the jet Reynolds number.
ural and forced conditions for Re = 42 000 and 62 500. The work of Mattingly and Chang," which examines

the linear stability of axisymmetric jets, brings out a number
of enlightening points. Using a family of measured profiles to

being indicated by the dashed line in Fig. 6). Going one step describe the mean velocity distribution of the jet, it was de-
further, it is possible to use the average slope dO/3X termined that for initial boundary layers that were thin com-
= 0.005 13 to extrapolate 0 back to the lip and obtain the pared to the jet diameter, both the axisymmetric and first

following analytical estimate for the initial momentum helical modes had nearly the same amplification rate and

thickness 0,: 9, = 33.15 I/1k - 0.002 (mm). The "error" occurred at frequencies that differed by 17%. The spectrum
(relative to strict ideal proportionality between 9, and 1/ of Fig. 8, and many others obtained for different Reynolds

-e is 2 ym, which is to be compared with the average initial numbers and exit conditions, indicates that the helical mode
momentum thickness of 140pm. (Vi, ) has a frequency approximately 20% higher than that

Because some of the work presented here involves shear- of the axisymmetric one V.o ). This result clearly shows that
layer instabilities driven by acoustic excitation, the effect of the initial jet is equally sensitive to both axisymmetric and
forcing on the momentum thickness was also measured at helical disturbances. 6 Since both modes were found to have
X ID = 0.07. A comparison of natural and forced conditions nearly equal growth rates, additional information is neces-
is presented in Fig. 7 for Re = 42 000 and Re = 62 500. In sary to determine the conditions under which one mode may
each case, the forcing frequency was chosen to be close to the dominate. It was also observed that the growth of the helical
linearly most amplified frequency (i.e., 870 Hz at Re mode was tied into the disturbance characteristics in the jet

- 42 000 and 2200 Hz at Re = 62 500), and the forcing initially. 5 In the lowest disturbance level case, the helical

to0 CASE -3L
Re - 50,000

U/U 1 00.6, .. .1 " . l' .o 1 1 . / 0'0 .O

U
FIG. 8. Velocity spectrum for case 3L at

2fljI" flO Re = 50 000 detailing nonlinear interac-
tions between m = 0, m = 1, and subhar-

I "2fo'fl,I fi." fi.- monic modes.

" /2fio" (fI,, 11,0
)  

I/2fio#(fil

200 600 1000 1400 1800 2200

f- HZ

1726 Phys. Fluids A, Vol. 1, No. 10, October 1989 Drubka, Reisenthel, and Nagib 1726



223
0 The two pictures were taken at random phases, a short in-

stant apart, therefore demonstrating the temporal switching

between these modes. Quantitative documentation of the

phase changes of these two modes is given in Fig. 10. The

mean azimuthal phase distribution, as documented by two

point correlations, for each of the frequency peaks of the

respective modes, provides clear evidence of their shape. The

reference curve for the helical mode is based on the superpo-
sition of the m = + I and m = - I (i.e., right- and left-

handed) helical disturbances.' 6

(a) With the restriction that only axisymmetric modes are

allowed, then, according to Laufer and Monkewitz 7 and Ho

and Huang, 8 the number of waves in a feedback loop should

be an integer:

0.5fo (x, 1c, + x,/a) = N, ()
where x. is the position of the first vortex merging, c, is the

dimensional phase speed of the subharmonic, a is the speed

of sound, and 0.5f,.o is the subharmonic frequency. For typi-

ME cal experiments in the moderate Reynolds number range,

a )c, so that Eq. (1) simplifies to

1b) x,/D = 2Nc,1/f,.D. (2)

FIG. 9. Smoke wire flow visualization highlighting both natural axisym- In ajet, Gutmark and Ho' 9 found N to have a value of I. The
metric (a) and nonaxisymmetnc (b) modes at Re = 10 000 (courtesy of S. effect of dropping the second term on the concept of a feed-
M. Kusek"). back loop was analyzed in detail by Reisenthel.' 4 It was also

shown by Reisenthel' a and Drubka5 that for high enough

mode was only observed through coherence measurement. frequency c, = 0.5 U. With this Eq. (2) becomes

No large discrete spectral peak was measured. Thus single x. ID = N /St.o. (3)

channel spectra may not always be sufficient to determine This shows that the pairing location is inversely proportion-

these modes. al to the initial Strouhal frequency.

* Visual evidence of the helical mode is presented in Fig. The original speculation about the stepwise behavior of

9, which was obtained using a smoke wire wrapped around the initial instability frequency by Gutmark and Ho' 9 cen-

the circumference of the jet flow near its exit. The top and tered about the idea that the location of the pairing is fixed in

bottom photographs depict, respectively, the axisymmetric space. If this was the case, from Eq. (3) it is observed that the

and helical modes under natural conditions at Re = 10 000. initial Strouhal frequency would be stepwise. A similar type

of behavior was observed with wide-band external excitation

by Drubka.5 Thus the stepwise behavior of the initial eigen-

1.0. OD I. frequency may be due to an external acoustic forcing. To
0.4 9 clarify these views, the variation of the initial axisymmetric

0.2 0m-0 instability frequency with Reynolds number was examined

8 /o for various exit conditions. Results for test flow condition 1 L

* 1-0.2

0 V/2 3/2 2V
r

6 - !SEM FIEL.D AT MIZZLE LIPS I I I I I -; [-} ItII I

1W 0 4

2 -0.2 .03 5

? -0.4 a

-0.4 

N-N 
i,,

0 V/2 3 5./2 2 I,

!so ma 20 300

FIG. 10. Azimuthal variation of phase difference between velocity and

near-field pressure for initiai axisymmetric and helical modes at FIG. II. Variation of initial axisymmetric Strouhal frequency with Reyn-

Re = 42 000 for case 3L. olds number.
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are shown in Fig. 11. Two separate sets of data were taken. turbance becomes internalized in the boundary layer. If the
One set corresponds to data taken offaxis, while the other set disturbance level in the boundary layer is low then one
corresponds to data taken from one of the pressure taps would expect that the disturbance would have no influence
around the circumference of the jet. Multiple peaks in the on the selection of the initial instability frequency since a
streamwise velocity spectrum were observed. Based on the linear instability mechanism is acting. To examine this, the
phase measurements around the jet and the off-axis develop- variation of the initial axisymmetric instability frequency
ment, the mode which developed a distinct subharmonic fre- was documented for test flow conditions 2L and 3L. When
quency was determined to be the initial axisymmetric insta- normalized by the measured momentum thickness using the
bility mode. It was carefully checked that the frequency of same criterion as in case 1 L, the scaling of the initial Strouhal
this mode did not vary in either the downstream or cross- number was found to be unchanged from that case.' Even
stream direction. To ensure that the probe did not influence though the initial boundary layer disturbance characteristics
the measurements of this mode, the amplitude spectrum of as observed in Fig. 12 and the downstream evolution of the
the pressure fluctuations, using one of the pressure taps, was jet were vastly different for test flow conditions l L, 2L, and
taken with the probe removed from the flow. When these 3L, the selection of the initial axisymmetric instability mode
data were plotted in nondimensional form, it was noted that remains the same when properly scaled.
the variation of the initial Strouha! frequency is linear with
the square root of the jet Reynolds number. The momentum C. Scaling of other instability modes
thickness at the position where a peak in the streamwise ye- In the previous section the initial axisymmetric instabil-
locity spectrum at the initial axisymmetric instability fre- ity frequency was determined in some instances using the
quency was first detectable was utilized to normalize all near-field pressure, measured at the nozzle exit. A typical
cases. In this manner the same relative starting point in the pressure spectrum is shown in Fig. 12 for cases I L, 2L, and
growth of this instability mode can be maintained between 3L at a Reynolds number of 42 000. Also included is a spec-
test flow conditions. trum of the background noise in the laboratory measured 0.3

Normalizing the data of Fig. 11 with this parameter, it m behind the nozzle at the same value of exit velocity. The
was observed that the initial axisymmetric mode scales as background noise exhibits a uniformly decreasing behavior
St 8 = 0.013. The same value was later repeated by Rei- and contains no discrete spectral peaks for thejet to possibly
senthel. " It should be noted here that for this initially low lock onto. The background pressure spectrum was measured
disturbance level conditon, 0 = 0, since the first peak is ob- over the entire operating range of exit velocities, flow config-
served very near the jet exit. This value of St9, agrees with the urations, and nozzle geometries to ensure that no external
results of Zaman and Hussain.2" They found that the natural peaks were present. Coherence measurements between this
instability occurs at Ste, = 0.012, normalized by the initial pressure signal and the velocity signal in the initial jet near
momentum thickness of the jet. Surprisingly, this value does the nozzle lip indicated that the two signals were uncorrelat- 0
not correspond to the maximum amplified mode according ed at all frequencies.
to linear theory, St., = 0.017. Thus the initial axisymmetric A few basic conclusions can be made from the pressure
mode is not the most amplified. Similar observations were spectra. First, the effect of the internal disturbance level of
made by Pfizenmaier2 | and by Michalke.22  the jet, and in particular the exit boundary layer, has a dis-

As the disturbance level in the core of the jet, and hence tinct effect on the near-field pressure outside the boundary
in the boundary layer, is increased, it is important to deter- layer. For low-disturbance levels, peaks exist in the pressure
mine the effect on the scaling of the initial jet instability. The spectrum corresponding to the initial instability modes, the
core disturbance level can be characterized by its fluctuation subharmonic mode, and modes which are generated through
intensity and also its spectral characteristics. The core dis- nonlinear interactions. As the disturbance level increases,

there is a broadband decrease in this pressure field. In addi-
tion to this, the peaks corresponding to the subharmonic
mode and the lower frequency nonlinear modes are no long- -

70 - 1/21. - er distinct, indicating an increase in the randomization due
SJ,0 ',O Re- 42.000 to the increased three-dimensionality. As was noted by

Z i.. /Drubka, 5 the growth rate of the jet also decreased with in-
! 50. ,. 121 •1 -f. )creasing disturbance level. This was partially attributed to

".- the weakening of the initial developing coherent structures.
This weakening caused by the increase of background dis-
turbances is now also observed in the broadband decrease of

- 'AC-GOUN-,.-- the pressure field.
0 CASt Having identified the peaks in the pressure spectrum,

---- CASE 2L. the nature of the scaling of these modes is examined next.
I AFor each of the test flow conditions, spectra similar to those

0 200 400 600 Boo 1000 in Fig. 12 were taken over small increments of Reynolds 0
f-H number. The frequency of each peak was normalized by the

FIG. 12. Effect of initial disturbance level on near-field pressure spectrum jet diameter and jet velocity. Typical variation of this nondi-
at Re = 42 000. mensional Strouhal frequency with Reynolds number is
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FIG. 13. Variation ofStrouhal frequency ofaxisymmetric, helical, and sub-
harmonic modes with Reynolds number for case 3L. - , I n 0 1.00 0.2 0.4 Q6 0.8 0
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FIG. 14. Development of the initial axisymmetric mode and its subhar-
shown in Fig. 13. It is seen that the Strouhal number of all of monic at Re = 42 000.

the modes that are observed in either velocity or pressure
spectra varies linearly with the square root of the Reynolds
number. This indicates that all of these modes scale at con- analysis6 ). The results indicate that at the coupling Reyn-
stant value of St, as was recently confirmed by Kusek, olds number condition, the development "f the initial axi-
Corke, and Reisenthel.' 6  symmetric mode is not changed. In fact, only the initial am-

plitude of the subharmonic mode is increased, due to the
D. Initial instability: Subharmonic resonance and stronger fed back pressure field. However, as the resonant
comparison with theory mechanism progresses, nearly equal maximum amplitudes

As shown in Sec. II B, the initial axisymmetric mode are observed.
grows exponentially until a finite amplitude of approximate- The proper interpretation of the position of subhar-
ly 1% of the jet velocity is reached. A subharmonic reso- monic resonance is not one subharmonic wavelength but
nance mechanism, as proposed by Kelly,4 then takes place rather two initial (fundamental) wavelengths from the lip.
and the growth of this new subharmonic instability leads to The reasoning behind this is clearly evident. For the subhar-
the pairing process. The concept that pairing is a result of a monic mode there is an initial region where the phase is con-
subharmonic resonance mechanism was pointed out by Ho stant, as explained by Drubka' After this region the subhar-
and Huang. ' The growth of this subharmonic mode reaches monic has a phase speed of 0.81 L{, which was clearly evident
a maximum value at the pairing location, and this amplitude in the high Reynolds number cases. Associated with this
is larger than the value for the initial axisymmetric mode, It difference in phase speed between fundamental and subhar-
was also shown by Drubka' that at the resonant position monic modes is a difference in wavelength such that 2.A,.o is
both the fundamental and subharmonic waves have the same smaller than the actual wavelength of the subharmonic in
phase speed (0.5 times the jet velocity), a necessary require- this region. This is simply because the two waves develop
ment for a resonance mechanism.' In addition to the equal initially from linear mechanisms. It is only after the reso-
phase speeds, the fundamental and subharmonic modes nance that the subharmonic mode changes phase speed so
-ust be out of phase for the pairing to occur, as demonstrat- that the wavelengths are related by a factor of 2. The subhar-
,.; by Riley and Metcalfe," and discussed by Monkewitz.6  monic wavelength thus changes as it develops. Since the res-

Initially the amplitude of the subharmonic mode is an onance is actually triggered by the finite amplitude state of
orderof magnitude larger than that of the fundamental. This the fundamental, the true interpretat on of the resonant po-
is due to the natural (self- ) forcing of the flow along its sition is that it occurs at two fundamental wavelengths
downstream development. The subharmonic mode also ini- downstream of the jet lip.
tially grows exponentially. At one subharmonic wavelength The spreading of the jet with downstream distance for
downstream, the subharmonic resonance takes over and the case 1 L at a Reynolds number of 42 000 is indicated by the
amplification of this mode increases by 40% (see Fig. 14, momentum thickness measurements of Fig. 4. At the reso-
and a comparison of the present data with Monkewitz's nant position of two fundamental wavelengths, the jet begins
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its linear growth. From visualizations it is observed that the -

initial rollup of the jet does occur at this position. The aver- L4 - CASE I.

age pairing position, as determined from the visualization, is 0j a CAi 

also indicated on this figure. Near this position there is ap- - A V XoE

proximately a 10% increase in the jet thickness as compared 1.0. ...... 6. of'f =2W

to the linear growth. The case illustrated in Fig. 4 is for the O.8 - -- MONKETZ AND 14IM -

natural coupling condition of case I L, where energy in the 0 1982 . DO

subharmonic mode was greatest. In this case pairing is seen
to have only a small influence on the linear growth region. 0.4 MIICHAgLC (1911511

For all other cases the effect will be even less. For naturally 0.2 LINEAR SPATIAL THE

developing flows, the momentum thickness of the jet does
not remain constant until pairing occurs, after which it dou- 0.01I I0.06 0.02 0.03 0.04

bles. This is only true in certain axisymmetrically forced Ieu 0
conditions, as presented by Ho and Huang." FIG. 16. Variation of mode phase speed with external excitation Strouhal

A summary of the measured amplification rates for the number for cases 2L and 3L.

initial axisymmetric mode, the initial subharmonic mode
(i.e., before subharmonic resonance), and the subharmonic
resonant mode (after subharmonic resonance) is presented Fig. 14. This fact is also borne out in the observation of a
in Fig. 15. The results demonstrate that the initial amplifica- constant phase speed over the same region, as reported by
tion of the axisymmetric and subharmonic modes, normal- Drubka.5 Some of his results are summarized in Fig. 16. The
ized by the proper momentum thickness, is independent of phase speed clearly follows the trend of Michalke's analysis
Reynolds number and the values agree well with those pre- for a round jet.22 At low frequencies, ultrafast waves are
dicted by Monkewitz and Huerre.' More scatter is observed observedjust as in the case of Bechert and Pfizenmaier94 and
in the data for the measured amplification rates of the reso- prerite by ainhaeoP
nant mode, but it appears that the amplification rates of predicted by Michalke. 22

these modes do not scale with the initial momentum thick-
ness 9,. Instead, it is expected that this mode should scale
with the momentum thickness at the resonant position (see A key element in the control of far downstream jet char-

Fig. 14). If this is true then the local momentum thickness of acteristics (such as spreading, etc.) revolves around the
the jet at the resonant position will not scale with the inverse transition from an initial length scale 9, to a terminal jet

square root of the Reynolds number. This is indicated by the structure of scale D. The final "passage" frequency was

deviation away from the dashed line. There is insufficient shown to scale with diameter,2 provided that the initial

data on the momentum thickness at the resonant position to length scale ratio is sufficiently large (D/20, > 120). Be-

comment further on this conjecture, which indicates that the cause the initial shear-layer instability scales with 9,, the

developing instability is ajet instability, and that viewing the "initial" and "final" frequencies of the jet are usually unre-

initial shear layer as locally two dimensional on the sole basis lated. At certain Reynolds numbers, however, a special cou-

of an initially thin boundary layer may be an incorrect as- pling can take place between these two instability modes.

sumption. The mechanistic interpretation of the coupling is that the

From the results of Fig. 5 it is observed that over the Reynolds number is such that an integer number of pairing

region of measurements the divergence of the jet, La/1,X, is events coincides with the end of the potential core. Because

1.7%. Because of the nearly parallel nature of the flow in this of the possibility of coupling between the shear-layer mode

region, it is not surprising that the growth of the distur- and the preferred mode of the jet, the organization and res-

bances is exponential over the entire region as indicated in tructuring of the shear layer is expected to depend on Reyn-
olds number.

It is well known that the long wave instability, common-

, , ,ly referred to as the jet column or preferred mode, develops

0.12 0 CAS IL in all axisymmetric jets. The value of its Strouhal number

0.0 CASE Xbased on diameter has been found to be typically 0.4, al-

0 FREYMUT (I") though variations between 0.3 and 0.6 may be found, de-
0 o.Os WCMALXE (191L) pending on whether the jet is forced, and depending on the

oo" - --- 11..K.EVUTZ AND_ particular facility and jet configuration. This instability is
identified on the jet centerline typically two to five diameters

004 downstream of the jet exit. Work by Kibens t showed that

0.02 when the exit boundary layer was laminar and the initial

0 0 0 axisymmetric Strouhal frequency was an integral power of 2

0 o 01 o.o203 0.04 of the long wave jet frequency (St,), a small amount of axi-
O/u1  symmetric excitation at the initial jet eigenfrequency had a

FIG. 15. Summary of mode growth rates with external excitation Strouhal tremendous effect on the organization of the jet. This result-

number for all laminar boundary layer cases. ed in a large fraction of the energy being associated with the
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0 coherent structures. Axisymmetric vortex pairings were . . . . .

clearly observed and found to be stationary in space. This

mechanism was found to depend on the coupling between 12 -sVo.42a.'

the initial axisymmetric mode and the long wave jet instabil-

ity. Under these conditions, the shear-layer frequency dis- 1o o 0 L

plays a stepwise behavior in X. This is not to be confused I * CASE 2L

with the stepwise behavior of the initial Strouhal frequency 0 0 00

with Reynolds number in the presence of spatially coherent e
external disturbances. - " 

Q

Based on the above results, a necessary condition for 0 ,

this to occur is that the initial axisymmetric Strouhal fre-
quency of the jet be an integral power of 2 of the long wave jet 4

* instability, '7 i.e.,

Sto = 24 Stf. (4)

The Reynolds numbers at which this coupling would occur o _ ______, _,

would then be given by 0 20 40 60 so 00

Re* = C(2 n Stf) 2 . (5) Re W3

is identified as the number of vortex FIG. 17. Reynolds number dependence for normalized amplitude of near-
In te abve euatin, 'field pressure from the subharmonic mode.

pairings. It must be assumed that the vortex interactions are

all axisymmetric for these relations to hold.
The jet Strouhal numbers were first determined along of the initial linear axisymmetric instability. This increase in

the jet centerline at X ID = 5 for five different initial condi- the subharmonic energy would then be associated with a
tions. At this downstream location, the peak in the velocity stronger pressure field for this mode, which would then be

0 spectrum is well defined for all cases. In each case, StD is felt at the nozzle lip. To examine this, pressure spectra at the
found to be independent of Reynolds number. The value of nozzle lip were taken at various Reynolds numbers using an
StD, however, is a function of the initial condition, varying alternate pressure measuring system that bypassed the pres-
from 0.42 to 0.485. For test flow conditions IL and 2L, StD sure taps for higher accuracy. For each Reynolds number
has a constant value of 0.42 and only marginally increases to the amplitude of the subharmonic pressure peak was nor-
0.43 for test flow condition 3L. When a thicker turbulent malized by the magnitude of the peak of the initial axisym-

0 boundary layer was utilized, the value of StD increased to metric mode, f.o- These results are displayed in Fig. 17 for
0.485. The value of this Strouhal number is a definite func- test cases I L, 2L, and 3L.
tion of the initial momentum thickness of the jet. For case For case IL there is a sharp maximum in the curve that
I L, the value of D /20i is larger than 110. For this case the occurs at the exact Reynolds number predicted by Eq. (5).
Strouhal frequency reaches an asymptotic value of 0.42. A closer examination of the pressure spectra indicated that

With the information provided in Fig. 11, the value of C the magnitude of the peak atf o continuously increased with
in Eq. (5) was calculated for test flow condition 1L as Re. The peak at the coupling position thus corresponded to
C = 3720. Knowing this value and the value of StD = 0.42, an abnormal increase in the pressure field at 1/2fio. This
the Reynolds numbers at which this coupling might take coupling is weak, though, since the increase in the ratio of
place were estimated from Eq. (5). The resulting resonant the pressure amplitudes is only about 2. Another indication
Reynolds numbers Re* form a geometric sequence: 2600, of the weak coupling is the observance of only one subhar-
10 500,42 000, and 168 000, as the number of pairing events monic mode in the pressure spectrum. This coupling mecha-
n increases from one to four. This result indicates that this nism was based on the idea of continual vortex pairing until
coupling occurs predominately at low and moderate Reyn- the downstream jet Strouhal frequency was reached. This
olds numbers. As Re increases this coupling becomes less continual pairing would then lead to the successive develop-
frequent. ment of modes l/2f4o, 1/4fio, 1/8f.o..... Yet, the second

Operation of the present 5 cm jet was limited to Reyn- pairing mode ( l/4f,.o ) is clearly not observed. A third indi-
olds numbers larger than 30 000. Below this value the pres- cation of the relatively weak coupling is the lack of any effect
sure field at the nozzle lip was not much larger than the this coupling has on the growth rate for the jet at this Reyn-
background level and the jet could have been susceptible to olds number.'
external disturbances. The facility could not be continuously Once the background disturbance level is increased as in
run at an exit Reynolds number of 168 000. Therefore if any cases 2L and 3L, this natural coupling disappears, i.e., the jet
indication of the coupling mechanism is present in the natu- is no longer capable of effective self-forcing, via pressure
rally evolving jet, it would be found at Re = 42 000. feedback.26 In these cases, the emergence of an initial helical

If this coupling is to occur, then the jet would become mode was clearly noted. With the competition between this
more organized in an axisymmetric sense. This increase in mode and the initial axisymmetric mode, it is not surprising
organization would lead to an increase in the observed co- that an axisymmetric coupling is not observed. If initial axi-
herent energy. Some of this energy would be visible in the symmetric perturbations of sufficient intensity were added
subharmonic mode but would probably not alter the growth at the proper frequency so that the axisymmetric mode com-
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FIG. 18. Reynolds number dependence for normalized amplitude of near-
field pressure from nonlinear mode based on interaction between initial he- 0o 2 40 so so too

lical and axisymmetric disturbances.

It* I 0-

FIG. 19. Effect of nozzle shape on Reynolds number dependence for nor-

pletely dominated the initial helical mode development, then malized amplitude of near-field pressure from subharmonic mode.

this coupling between long and short waves would be ob-
served at the indicated coupling position. These results sug- can no longer be thought of as being fully axisymmetric.
gest that continual pairing (in the spatial sense) is not the To ensure that this coupling behavior was not in-
coupling mechanism between long and short waves as Ki- fluenced by the shape of the nozzle, a similar study was per-
bens" found using external forcing. By externally exciting formed using a matched cubic nozzle. These results are dis-
the jet in the manner of Kibens, " it is possible to override the played in Figs. 19 and 20. The coupling Reynolds number
effect of the helical disturbances. The continual pairing then for this case is essentially the same value as for the fifth-order
is a result of the externally imposed axisymmetric forcing. nozzle since the exit boundary layers are nearly identical.
As documented by Corke, Shakib, and Nagib, 7 external axi- The coupling phenomenon is once again displayed in Fig. 19
symmetric forcing acts first to inhibit the natural coupling for test case 1L. The only difference in the behavior of the
mechanism before efficient locking is achieved at higher am- two nozzles is the larger value of p'(0.5f,. )/p'(f.o ) for the
plitudes. matched cubic nozzle. Upon examination of the values of the

To observe the effect of the helical mode on the natural peaks in the spectra, it was determined that the increase in
coupling, the peak amplitudes of an axisymmetric-helical this value was due to a decrease in the value ofp'(f 0 ).
nonlinear interaction mode is considered in Fig. 18 as a func- The variation of the rms pressure fluctuation associated
tion of Reynolds number. This interaction mode is the differ- with the subharmonic nonlinear interactive mode described
ence between the subharmonic mode 1/2f,., on the one hand, above is shown in Fig. 20. In this case the behavior of both
and the difference mode between helical and axisymmetric nozzles is nearly identical and once again demonstrates the
frequencies on the other. The choice of this frequency as a
sensitive indicator originates from the fact that the interac-
tion modes have lower frequencies than the original modes,
and are therefore more efficient radiators at a fixed distance
from the jet lip. The amplitude of the interaction mode is . o FIFTH OROER CONTOUR

suitably normalized by that of the fundamental axisymmet- "0 MATC.Eo cU.iC CONTOUR

ric frequencyf,, so as to indicate the relative importance of .4 . 0o
the helical to axisymmetric modes. The results of Fig. 18 for 0" o 0 0 0 o

the IL case show that at the coupling Reynolds number, this 0- ,.o

ratio has a minimum value. This minimum corresponds to 0 CASE IL
the increased axisymmetric field described above. As the 0
Reynolds number deviates from that of natural coupling, the .o6

relative importance of the helical mode grows as shown by
the trend of the data toward values of this ratio larger than 1. 0.

In case 2L no natural coupling was observed. This is demon- 20 40 GO 0o 00

strated here by the importance of the helical mode as indicat-
ed by this ratio being larger than I. This value for case 2L is Rea go"'

equal to that at the higher Reynolds numbers for case IL. FIG. 20. Effectofnozzleshapeon Reynoldsnumberdependenceofnormal-
This further demonstrates that as the disturbance level in- ized amplitude of near-field pressure from the nonlinear mode based on the

creases, the helical mode is quite distinct and the flow field interaction between initial helical and axisymmetric disturbances.
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natural coupling rosition and the emergence of the helical 000

mode when the Reynolds number deviates from the coupling le
Reynolds number. These results are consistent with those of a _-005

the previous figures. Thus it appears that the only difference /
between the two nozzles is the magnitude ,r the pressure -o010
field at the nozzle lip due to the initial development of the ,
axisymmetric instability mode. Z5 -0 15

In light of these results, it is possible to identify further .
the existence of the natural coupling on the basis of simple - o
mean velocity measurements such as the centerline decays -

obtained at various Reynolds numbers and presented in Fig. -0 25

1. As documented recently by Reisenthel 4 through sensitiv- Re

ity of such profiles to acoustic forcing, the jet column mode
displays a relative insensitivity to excitation, in accordance FIG. 22. Variation of relative spreading between natural and forced jets

with the findings of Hussain and Zaman. " The weakly reso- with Reynolds number.

nant jet at Re = 42 000 is in fact "self-forced," which ex-
plains the increased difficulty in artificially exciting it, sin,.e the relative insensitivity to external forcing at the coupling
there is competition between the externally introduced per- Reynolds number.
turbations and the naturally synchronized oscillations in the Streamwise velocity spectra taken along the similarity
jet. Calculations aimed at quantifying the amount of line U/U = 0.5 are shown in Figs. 23-25 under conditions

aulaionshejet anmd baed onuavailaentierin d y of external excitation at Re = 66 000 and 42 000. The com-
spreaming of the jet and based on available centerline decay plex nonlinear interactions, taking place in the shear layer
measurements are presented in Figs. 21 and 22. Figure 21 and depicted in Figs. 8 and 12, are indicated by the multitude
shows thervaation of the spreading estimation Swith Reyn- and relative broadness of the spectral peaks. The jet column
olds numbers. The quantity S(is defined as the integral from mode (Re = 42 000) corresponds to the flow field with the
X= 0etoX = 8Dofthevanable (i n- U /Uj), and therefore highest "resilience" to external forcing. Despite this fact, the
represents the area between the line UCt/Ur = 1 (no spread- possibility of"unlocking" the jet is expected, provided that a
ing) and U of(X)/Uj. The integral S naturally depends on sufficiently high level of excitation is applied. This hypothe-
the location of the last spatial sample and becomes in theory sis is tested in Fig. 25. The spatial structure of the shear layer
unbounded for large X. This operational definition (truncat- at Re = 42 000 under large amplitude excitation is illustrat-

ing at approximately twice the potential core length) is to be ed by the spectral measurements. As demonstrated recently

regarded only as both a convenient means of reducing the dbthspcrlmauens.Admotae eety
regiadedata onl as a connient meas fofreduing the esby Reisenthel, 4 the increased excitation levels also lead to
available data and as a consistent method for the estimation an increase in the centerline decay, as measured by data simi-

of spreading2 -for the near region of the jet. Figure 21 shows

that S is always greater for the unforced (natural) case. The lar to Fig. 1.

kink in the curve at Re = 42 000 ill~strates the robustness, .Finally, it is worth mentioning that under resonant con-

with respect to external excitation, of the jet column mode. ditions, the final Strouhal mode was found to be correlated

This is made clearer in Fig. 22, which presents the variation to the near-field pressure along the entire axial extent of the
ofths relatie sreaerinFg. (S, whi reen ntul vaaind potential core. The emergence of this mode was most clearlyof te rlatve predin (5, - ,~)beteennatraland noted in the ultralow disturbance level condition of flow 1L

forced configurations with Reynolds number. The variables (se ig the centrline l evelopmn o this
S, ad S reresnt he alu of cacultedforthenatral (see Fig. 17). The centerline amplitude development of this

5S, and 5S/represent the value ofrs calculated for the natural

and forced cases, respectively. Figure 22 therefore illustrates mode for this case at Re 42 000 is shown in Fig. 26. Also

1 0 Re =66000 , il,
0.9 Nilu,, UAU/Li 0.5

, 0 '' , " . - 0.20

0.4 0.59 E
0.. 0.3e 0.73

0.1 1 .00
0,0_____ 1__0 _ __0 0 1000 2000 3000 4000 00

30000 40000 50000 600M 70000 110000

Re Frequency (Hz)

FIG. 21. Variation ofspreading estimate with Reynolds number for natural FIG. 23. Variation of velocity spectra with downstream distance under
and excited jets. forcing conditions at Re = 66 000.
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FIG. 24. Variation of velocity spectra with downstream distance under
forcing conditions at Re = 42 000.
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included in this figure are the results of Crighton and Gas-

ter29 who calculated the centerline spatial amplification FIG. 26. Streamwise development along the jet centerline of amplitude of

rates for an axisymmetric disturbance in a slowly diverging the final Strouhal frequency at Re = 42 000.

jet flow. Excellent agreement is observed within the first 2.5
diameters even though the measured divergence rate is ap-
proximately 25% greater than that used in the theoretical length scale is used. The existence of previously predicted
predictions. As the divergence rate increases, the local am- ultrafast long wave instabilities is confirmed experimentally
plification rate should decrease. This is probably part of the and the phase speed is found to compare favorably with theo- •
discrepancy between predictions and the measurements be- ry. Finally, a weak coupling between the shear-layer mode
yond 2.5 diameters. and the preferred mode of the jet is revealed at resonant

Reynolds numbers, which can be predicted by deterministic
Ill. CONCLUSION arguments about vortex interactions and the scaling of the

With the an iability of an easily controllable, low dis- initial jet instability.
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CONTROL OF TWO AND THREE DIMENSIONAL
MODES IN THE INITIAL REGION

OF AN AXISYMMETRIC JET

S. M. Kusek t , T. C. Corkel and P. Reisenthel •

Fluid Dynamics Research Center
Illinois Institute of Technology

Chicago, Illinois 60616

Abstract r Radial coordinate
Re Reynolds number based on diameter

Both active and reactive (i.e. enhanced feedback) control (UjD /v)
of fundamental two- and three-dimensional amplified StD Strouhal number based on diameter
modes in an axisymmetric jet is presented. This is done (JD /Uj)
by introducing localized acoustic disturbances produced Ste Strouhal number based on momentum
by an azimuthal array of miniature speakers placed in thickness (f O/Uj)
the close proximity of the jet lip on the exit face. The u' Streamwise velocity fluctuation
independent control of each speaker output allows dif- U Mean streamwise velocity
ferent azimuthal amplitude and phase distributions of U. Jet exit velocity
periodic input pressure disturbances. Under active con- x Dwteam dita

trol, the periodic time series seeding inputs are supplied lip

externally. Under reactive control, the seeding input is lip

derived from the analog time series proportional to the Streamwise wave number

velocity fluctuations taken at a point in space in the -a, Spatial amplification rate

developing shear layer downstream of the exit lip. In 8 Shear-layer thickness

the case of the latter for axisymmetric modes, Reisenthel 7 Azimuthal coordinate

(1988) and Reisenthel et al. (1988) have demonstrated 7o Arbitrary reference azimuthal coordinate

that the resulting flowfield is globally unstable and may Phase angle

be modeled using rather simple model amplitude equa- Strearwise wave length

tions. The objective of the present work is to: i) exam- 0 Shear-layer momentum thickness

ine the linear characteristics of low-level helical seeding, v Kinematic viscosity

and ii) include helical modes into the enhanced feed- P Fluid density

back concept. to Angular frequency

Nomenclature I. Introduction

A Total forcing amplitude The role of three-dimensional disturbances in
A * Maximum amplitude of single helix axisymmetric jets has been the focus of a number of stu-
A Forcing amplitude of right-handed helix dies in the last two decades. Although most of these stu-
A 2  Forcing amplitude of left-handed helix dies are theoretical and have addressed the linear stabil-
C Phase speed ity properties of helical modes, recent attention has been
CTA Constant temperature anemometer given to the possibility of strong intermodal resonant
D Jet diameter interactions. The latter mechanism was experimentally
f Excitation frequency demonstrated by Cohen and Wygnanski (1987). and

fo Natural axisymmetric node frequency reinforces the need to consider the potential of 3-D

f I Natural helical mode frequency modes which may be considered 'dormant' by linear
HMG Helical Mode Generator standards.
PMMA Polymethylmethaciylate Perhaps the most recent of theoretical analyses of
m Azimuthal wave number the stability of azimuthal modes is that of Ahmadi-
q Dynamic pressure (1 pU 2) Moghadam (1986), which considers a thin circular shear

Dynamicpressure_(_ pU_ )  layer with a Blasius profile. The use of this self-similar
f Graduate Research Assistant profile is justified on the basis of experiments with lam-
$ Associate Professor, Member AIAA inar exit conditions (see Drubka, 1981). In this study,
SVisiting Aslstant Professor, Member AIAA the effect of curvature was represented by the ratio 51D,

Copyight 0 1989 by Stephen M. Kusek, Published by the American
Institute of Aeronautics and Asuonautics. Inc.. with permisston.
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0

and the results compared to Michalke's (1971) hyper- produced by these modes, rather then on the linear
bolic tangent profile: although small differences in the stages per se. A frequently used evidence of such
mean velocity profile were found to produce sizable interactions is the mean flow distortion produced by the
quantitative discrepancies, several general conclusions simultaneous forcing of modes with same frequency
could be drawn: i) the phase speed depends strongly an (see, e.g., Cohen and Wygnanski, 1987, and Long et al.,
azimuthal wave number (m) at low frequencies (in par- 1988). Admittedly, the concept of resonant interactions
ticular, the non-dispersive character of the instability (and in particular: subharmonic resonant interactions)
waves increases with increasing rn), ii) the linear appears to be a highly promising avenue of research for
growth rates decrease with increasing m, and iii) in any controlling jet flows. For example, Ahmadi-
event, these effects are accentuated by curvature, and Moghadam's (1986) analysis predicts the possibility of a
most felt for low Strouhal number. An earlier inviscid Craik-type (1971) triad interaction in the jet, leading to
spatial analysis by Michalke (1969) for a 2-D hyperbolic "explosive growth".
tangent profile showed similarly that 2-D modes are Although it is our goal to investigate this issue
always more amplified and that the wave dispersiveness experimentally in a forthcoming study (Kusek, 1989).
and amplification rate (--ai ) both decrease with increas- this manuscript describes the results of a preliminary
ing spanwise wave number. investigation aimed at filling some gaps in the available

In contrast to the 'locally parallel' theories, experimental data dealing with the truly linear (i.e. very
Plaschko (1979) used a multiple scales method similar low amplitude) stages of helical instabilities. The use of
to the approach of Crighton and Gaster (1976), in order very low initial amplitudes to seed non-axisymmetric
to properly capture the slowly diverging nature of jet modes is made possible in part by: i) the design of a
flow. A higher gain was found for the axisymmetric helical mode generator (described herein) relying on a
mode at higher Strouhal numbers, whereas lower receptivity mechanism at the lip, and ii) by the use of an
Strouhal numbers promoted higher gain for m = 1, at ultra-low freestream turbulence facility. It should be
farther downstream distances. In addition, Plaschko noted that controlled input levels of acoustic excitation
(1979) showed that the higher order helical modes provide us with a means of assessing amplitude thres-
(Im I _2 2) were always less amplified than their axisym- hold effects for non-linear resonances.
metric (m =0) and first helical (m =±1) counterpart. In addition, low excitation levels constitute a

Mattingly ano Chang (1974) reported similar realistic way of seeding instability waves, because these
results using inviscid spatial theory applied to a family levels are of comparable strength to those generated by
of experimentally determined velocity profiles in a low the pressure feedback which occurs naturally in jets 0
Reynolds number water jet. They found that the (Drubka, 1981). Such effects may, in fact, be related to
axisymmetric mode dominates the jet column initially, the temporal switching which has commonly been
but that the m =±1 mode becomes the most amplified, observed between axisymmetric and helical (m =±l)
past x/D =3. Their results also indicated that the modes (Mattingly and Chang, 1974, Shakib, 1984). and
m =+? mode was never dominant. Recently, Cohen and for which no satisfactory explanation has yet been pro-
Wygnanski (1987) also performed an inviscid linear spa- vided. An illustration of this switching is provided by
tial stability analysis of analytically-fitted experimental the single realization flow visualizations of Figure 1.
profiles and obtained good agreement of the mode Both photographs correspond to the natural jet at Re =
shapes in the initial region of the jet. The importance of 10,090. The top picture represents a typical axisym-
jet divergence was incorporated through the parameter metric instability. However, the bottom one (taken an
R 1,1 (the local ratio of the radius where UlUj= .5 to instant later) shows a long wave length helical instabil-
the momentum thickness). The results of their analysis ity, past x/D = I. In contrast to this 'single helix', Fig-
qualitatively corroborate those of Ahmadi-Moghadam ure 2 illustrates the possibility of two simultaneously
(1986). In particular, they substantiated analytically that occurring helices of opposite azimuthal wave numbers,
when the ratio of spanwise to streamwise wave numbers at Re = 20,000. Our primary and long-term objective in
was small, all modes behave essentially as if the mean this study is to understand the mechanism controlling
flow were two-dimensional, the temporal switching, coupled with the investigation of

In spite of the differences in the analytical new ways in which to alter jets, using controlled two-
approaches taken by the above investigators, it is clear and three-dimensional excitation. In the present paper,
that the two linearly dominating modes on a jet column both extrinsic and intrinsic (enhanced feedback)
are the fundamental (m =0) and first helical (m =±1) excitations of simultaneous (m =+l,m =-I) helical
modes. Although their linear characteristics are virtu- modes are presented.
ally indistinguishable at the early stages (i.e. when the
shear layer is thin, compared to the jet diameter), there is
a greater likelihood to observe and characterize the heli- n1. Experimental Apparatus
cal modes at the larger downstream distances (e.g.:
xID > 3). This may explain in part why the few avail- This experiment was performed in the same jet
able experimental studies of helical mode instability facility that was used by Drubka (1981), Shakib (1984),
appear to have focused on the non-linear interactions Corke et al. (1985, 1989), Reisenthel (1988) and

0
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Figure 2. Smoke-wire flow visualization depicting the
possibility of naturally occurring 'double' helices (Re
= 20,000).

* superposition of these two periodic functions yields
A 0,y) = 2A * sin(-wt + y7) cos(m y). Therefore. to
produce equal and opposite helical modes with azimu-
thal wave number ±m and frequency w, each speaker

-i dwill operate with a periodic input sin(-ot +yo), with an
azimuthally stationary modulated amplitude determined
by its azimuthal position according to: 2A cosmmy).

Figure 1. Smoke-wire flow visualization depicting na- With 12 speakers it may be possible to excite helical
tural axisymmetric (top) and helical (bottom) instabil- modes with azimuthal wave numbers up to m =±6. The
ities at Re= 10,000. maximum azimuthal wave number will correspond to a

ratio of streamwise to spanwise wave numbers of
Reisenthel et al. (1988). Its very low core turbulence approximately 2.6 (wave front leaving at = 21' from the
intensity level (u'/U = 0.05%) makes it well suited for jet lip). For reference, with the azimuthal wave number
measurements on stability and mode interaction. The m = ±, this angle will be approximately 90, for a
characteristics of this jet have been extensively docu- streamwise to spanwise wave number ratio of 16.
mented in these investigations in terms of eigenmode
distributions of the fundamental instability and 19 CM1.9 1.2MM,"

interacted modes, along with their dependence on chang- . /
ing initial conditions including Reynolds number, initial
shear layer thickness and core disturbance level. / -

In order to benefit from the results of previous _--_ - ____ -

measurements, special care was taken in the design of a - , t -" --
fixture for holding an array of miniature speakers at the\ . _.
exit plane of the jet. The top of Figure 3 shows a
schematic of the exit region of the jet facility. The exit
diameter is D = 5.08 cm. Close to the exit edge are
eight pressure taps which provide time series informa-
tion on the unsteady pressure field at the jet exit. The R 5.715 -JET EXITPRESSURE TAP ETXI

speaker fixture (same scale) for holding the 12- PE R 5E080-- SPEAKER

downstream-facing, miniature speakers is shown at the 0.19 x 0.159 -.. P

bottom of the figure. The fixture assembly (Figure 4) is NOTCHES rYP .' \A

designed to slip over the exit face of the jet without END V IEW R 3.302

introducing any additional development length and FOR CLARITY I

thereby affecting the initial shear layer momentum 10-32 R 360 0-K ,

thickness. A photograph showing the fixture with 12 TAPPED L i. /HOLE
speakers mounted on the jet exit is shown in Figure 4. IOE 1.367 t* .

I TYP.05
To excite a helical mode with positive wave '..-- TYP.

number (clockwise moving) m, and frequency w. the 1--., 0.476

periodic time series to an individual speaker would be.. i.- 1.750

A I(t,y)= A" sin(my-01w +yo). Here, -0 is an arbitrary
phase shift. The opposite going, equal amplitude helical Figure 3. Schematic of jet nozzle (top) and low di'tur-
mode with wave number -m, would be produced by the bance fixture (bottom) for holding 12 miniature
periodic function A2(,Y) = A* sin(-my-t +yo). The speakers at jet exit face.

0 3
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the lower portion of the outer ring (see Figure 6b). The
stainless steel wire is attached to a reel and threaded

through the lower end of the steel tube, which causes the
wire to pass through the oil reservoir, where droplets
adhere to it. The wire is then threaded through the 16 0
supports and eventually passes through an identical oil
reservoir before attachment to the second wire reel. A
close-up view of the installed HMG and smoke-wire is
showed in Figure 6c. This gives an indication of the
relative size of smoke-wire components in the entrain-
ment region.

Presently, a hand crank is turned to move the wire
from one reel to the other. In doing so, the wire rises
through one oil reservoir where the oil droplets are
further distributed to the tapestry needle eyelets to form
16 mini oil reservoirs. These abundant reservoirs
decrease the number of turns required to coat the wire

L completely. Note that the radially adjustable support 0
rods allow the smoke wire shape to be tailored for vary-

Figure 4. Photograph of helical mode generator mount- ing fluid entrainment conditions. For instance, whereas
ed on jet nozzle. only minor changes are required in the smoke-wire

shape when varying the Reynolds number at a fixed

Figure 5 shows a simplified schematic for one xID, visualization at larger downstream distances

pair (1800 apart) of speakers. To force helical modes, a requires substantial changes in the smoke-wire cir-

single time series (with gain factor cos(my)) originating cumference. Additional flexibility is provided by the

from a digital/analog output in the case of external exci- ability to electrically energize the smoke wire between

tation, or from an anemometer output, in the case of any two support rod locations. This makes it easy to

enhanced feedback control, would be sent to each visualize one section of the shear layer when looking at

speaker pair. The speaker pairs operate in phase for azimuthally varying conditions.

even azimuthal wave numbers and with a phase differ- Future modifications to the smoke wire apparatus
ence of 180' for odd wave numbers. To force axisym- will include a motor drive (replacing the hand crank)
metric modes, a single time series is added at each that can be triggered from a typical smoke wire timing
speaker control circuit. In this case, the axisymmetric device to further automate the visualization process.
mode need not be at the same frequency as (or fixed
phase offset with respect to) the helical modes. We
therefore can seed directly subharmonic resonance M. Results
interactions. The speaker control circuit accounts for
nonuniformity in sound level output between individual I. Passive Effects
speakers. The ability to add axisymmetric and ±m heli- Any passive effect of placing the speaker holder
cal modes will allow the study of modal interaction and speakers onto the exit face of the jet is documented
and/or mode switching. in Figures 7 and 8. Figure 7 shows the normalized mean

All flow visualizations were made utilizing a profile through the jet shear layer for the x-position
modified smoke wire technique. Traditionally, a station- closest to the jet exit, x/D = 0.11, at two Reynolds
ary stainless steel wire (0.1 mm diameter) is mounted numbers which bracket our general range of operation
around the periphery of the jet exit at a fixed position for measurement (i.e. 30,000 < Re < 80,000. Multiple
close to the jet exit. Between each visualization, the
wire is coated manually with smoke-generating oil in a
somewhat tedious and time consuming manner. The
modification to this technique was to automate the oil
coating procedure and create a built-in flexibility to
introduce smoke at any desirable x ID location.

Photographs of the new configuration are shown
in Figure 6. An outer structural ring (Figure 6a) was AXISYMM'ETRIC
made of PMMA for its electrical insulation value and INPUT

ease of machining. The 16 wire support rods are con- G, - os(m') a SPEAKER CONTROL "T /

structed from 2.4 mm diameter aluminum with tapestry

needles (large eyelets) pressed into their ends. A small
steel tube (0.2 rtim i.d.) is glued to the outer ring at the Figure 5. Schematic of the conditioning electronics
lower entrance to an oil reservoir cut into the top side of driving each pair of miniature speakers.

4
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data sets show the degree of repeatability of the mean most amplified modes. These are shown in Figure 8 in
profile in this initial region of linearly developing terms of the fundamental axisymmetric mode at fre-
modes. When in place, the helical mode generator quency fo, it subharmonic, fo/2 and m =±I helical
(HIG) shows no discernible effect. A more sensitive mode at frequency f 1. For cases when the exit boun-
indicator is the Reynolds number dependence of the dary layer thickness is small compared to the jet diame-

ter, inviscid linear stability theory predicts that the insta-
bility modes scale with Strouhal number based on local
momentum thickness (Ste). For this particular jet facil-
ity, it is shown (Drubka, 1981, Nagib et al., 1989) that
upstream of the location corresponding to subharmonic
resonance, 0 growths less than a few percent. Conse-
quently, the measured 0 is approximately equal to the
exit momentum thickness. In cases when the exit boun-
dary layer is laminar, such as here, the boundary layer
momentum thickness is inversely proportional to Rey-
nolds number (Blasius profile). Since Ste = constant,
then SteD /0 - -t, or: SID -c Re t/.

This is seen to be the case without (top) and with
(bottom) the HMG for these three natural dominant
modes. The slopes of ihese curves, which is propor-
tional to Sig, are given in the insets of the two graphs.
For the case without the HMG, the Ste forf 0 is 0.0144.
Gutmark and Ho (1983) have tabulated values of Ste for
the fundamental axisymmetric mode from experiments
in nine different jet facilities. The values that they report
range from 0.012 to 0.018. Drubka (1981) reported a
value for this jet of 0.013. Comparing our case with the
HMG we observe a slight change in Ste for both f0 and
f 1. The difference of course is well within the type of
scatter documented by Gutmark and Ho. Ste for the
f0/2 mode remains the same. The velocity distributions
and the measured momentum thicknesses showed no

1.2

1.0 ...... - - 4G
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0.6
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0.2 xD 0.11 S 6Re 30.000
0 .o3 -2 - I 2 3
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Re - 60,0000 -

001
.0 12 . 2 3
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Figure 6. Photographs of the new flow visualization ap- Figure 7. Normalized mean velocity profiles across
paratus ; (a) overall view ; (b) close-up of oil reser- shear layer without and with helical mode generator
voirs and smoke-wire path; (c) complete assembly (inactive), for Re =30,000 (top) and Re = 80,000 (bot-
with helical mode generator. tom).
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to be true for excitation with the single miniature
speaker at the jet exit. A comparison such as the one0 f. (Si . 0,0144)

a,1, ,M.. 0.01, provided in Figure 9 also allows to calibrate the true
0 1 (l 01076)forcing effectiveness of the near-field sound source, as-compared to traditional loud-speaker excitation.

4 For the same conditions, with the single active
P 3speaker, the azimuthal amplitude and phase distribution2 at a fixed x-position (x =6 mm) is shown in Figure 10.In 

The azimuthal position, y=0, marks the center position
of the active speaker. These show a localized amplitude

50 15 MO M V5 00 effect with noticeable spreading (that is, as early as
Re" x/= 1.2). The phase distribution documents an

0 1 ,' .oapproximately 2500 phase shift in the azimuthal direc-
tion produced by the single small speaker. With the
addition of a 180' phase shifted time series at the oppo-
site azimuthal position, we would have the minimum
number of speakers (two antinodes) needed to produce
the m =+l helical mode. In the direct application, we

2 Jill utilized all twelve speakers to produce a smoother
azimuthal variation for this lower order mode. Spectral

oanalysis of the nominal input showed that the energy
0 1 0 Mcontained in the first helical mode is approximately 20dB above the peak value of the next most energetic har-

Figure 8. Strouhal number dependence of dominant na- monic introduced by discretizationt.
tural instability modes without (top) and with (bot- Figure 10 documented the azimuthal variation in
tom) helical mode generator (inactive). phase and amplitude at a single x -location. Similar data

taken at different x -positions were used to construct the
effect to the HMG. We therefore attribute the slight full 3-D view in Figure 11, using a lower forcing level
difference in the slopes to a change in the receptivity at p'/q = 0.02%. In moving in x, the radial position
the lip, rather than a change in entrainment conditions, remained on the same similarity line, U/VU = 0.6, as in
which would presumably have changed 0. This is obvi- Figure 9. In this case, the amplitude and phase are
ously a small effect and otherwise these dominant presented as isocontour levels seen as alternating black
natural modes develop according to linear theory in
either configuration.

ft.a 70,0

2. Active Forcing . -O"q'* O

As described in Section II, the ±m helical mode .40
forcing requires an initial prescribed azimuthal ampli-
tude modulation at the lip of the jet. Ideally, this would E
occur in an azimuthally-continuous fashion. In our
situation, the azimuthal initial condition is applied in a a 0
discrete fashion from each of the 12 speakers. We there-
fore were interested in first examining the response of "Il oAo o.o o3 oo oo
the shear layer to a periodic disturbance produced by a ,/ D
single operating speaker. Ill 0 0

The active effect of a single miniature speaker is 0 0

documented in Figures 9 through 12. Figure 9 docu-
ments the streamwise development of amplitude and 1 0
phase at a fixed Reynolds number, along the similarity .0 0Sline U /U =0O.6, at a constant azimuthal position. The 0 / 00/ .._ ,

jet conditions and forcing frequency correspond to the 2 0C"
f0 = 2500 Hz case of Shakib (1984) and Corke et al. o
(1985), produced by a far-field sound source. In Figure
9, we compare the streamwise development between O IO 020 X 03 040 0oz/D

such a far-field source and the single speaker of the
HMG. As is evident, the comparison is excellent, espe- Figure 9. Comparison between near-field and far-field
cially in the initial linear growth and saturation region. acoustic excitation for the streamwise development of
In the case of the far-field sound source, the excited disturbance amplitude (top) and phase (bottom) (Re =
mode will be axisymmetric. We do not expect the same 70,000 ; f = 2500 Hz ; p'/q = 0.02% ; U/UJ = 0.6).
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and white bands. The spatial domain is presented as a
flat projection with the azimuthal coordinate y on the I-.,0=
abscissa, and the x-direction, made non-dimensional 1-s .2

using the jet diameter, on the ordinate. The white verti- 9,14

cal lines in the center mark the location and extent of the .
single speaker. The white lines at both ends (y =±600)
mark the valid region of the phase, where the linear
coherence remained above 0.7. Note that this azimuthal .0
region is considerably smaller than in the case of Figure
10, for which the coherence was approximately unity "70 ' 12D ZZ 0 0 120 ,
throughout, due to a four-fold increase in the forcing Y
level. 2

The amplitude is log based (dB) so that contour
bands spaced equally in x indicate constant linear
(exponential) growth. Such a linear growth region is
seen to exist in the initial region directly downstream of 2

the active speaker. This extends to approximately x/D 5 . ..
= 0.20 (x/A = 2.2), where nonlinear effects result in
energy saturation in this mode. For this mode, the point .125 a/ X 1.2

of energy saturation marks the position of the first vortex I
roll-up (see, e.g., Shakib, 1984). On either side of the ".0 . -W . 0 - 20 8

speaker, the energy spreads and feeds the same mode. Y

This mode is seen to amplify at approximately the same Figure 10. Azimuthal distribution of amplitude (top)
spatial rate, but because the initial amplitude decays in and phase (bottom) at x/% = 1.2 and UIU. = 0.6. for
the azimuthal direction (see Figure 10), the development single miniature speaker (Re = 70,000 ; f = 2500 Hz:
length, before reaching saturation, is shifted down- p'/q = 0.09%).
stream. From the phase distribution at the top of the
figure, we observe a constant phase development in the 25" per contour
azimuthal direction. The number and width of phase 6.2 -mjW
contour bands in the x-direction is indicative of the 0.,, 

_/za

phase velocity of this mode. Therefore, the phase distri- 6.2 _--__,_,_,___ '
bution indicates hat the single speaker is exciting a sin- '. .
gle mode which s traveling at a constant phase speed X .. ,
(C/Uj = 0.54) everywhere within the valid azimuthal
region. Flow visualization which primarily marks the
rolled up vortex would show for this case what would -6 - -n - is I 7SG (degrees)

appear therefore to be an inclined axisymmetric mode 2 dB per contour

(or so-called "tilted axisymmetric" mode ; this question ..-
is still under investigation). However, the feature imply- 6.24

ing the inclination would actually be a result of the , .1
azimuthal distribution of the initial amplitude of this ,...
mode which provides, away from the active speaker, a 5 6.36

longer development length before saturation and vortex 6.4

roll-up. 6'"

The spatial amplitude and phase information from -0 -16 -2, -6 i s'
the previous figure can be used to show the reconstituted Gin (degres)

spatial development of the measured periodic fluctua- Figure 11. Spatial distributions of phase (top) and am-
tions excited from the single active speaker. This is plitude (bottom) as a function of streamwise and az-
presented in Figure 12. In this case, the contours imuthal coordinates foi single miniature speaker (Re =
represent pseudo-instantaneous velocity fluctuations, 70,000 ; f = 2500 Hz ; p'/q = 0.02% ; U/U = 0.6).
and the surrounding region (grey) corresponds to back-
ground amplitude (i.e. 40 dB below maximum). The spreading angle taken from this figure is a quite large
regions of closed contours have magnitude which are value of approximately 1600. The unusually large
positive (denoted by '+') or negative ('-'). From these azimuthal spreading rate could be explained by a quasi-
we can reconstruct the streamwise growth and azimuthal planar response of the thin shear layer, and attests to the
spreading of the excited periodic mode. These verify high receptivity to disturbances at the exit lip.
that the disturbance excited by the single miniature Figures 13 and 14 show comparable results for
speaker is planar in nature. The total azimuthal the case of two active neighbor speakers which are of

t This value is to compared to 15.8 dB, using 8 speakers, nominally equal amplitude but 1800 out of phase. This
and 11.5 dB with 4 speakers.

* 7
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32' per contour

0. re

X 0.1
0.2

m -a -4" 1
G1 mm (degrees)

1.6 dB per contour

O.Z4

X :.Is

-48 -29 0 to 40 f
Gaa (degrees)

Figure 13. Spatial distributions of phase (top) and am-
plitude (bottom) as a function of strearnwise and qz-
imuthal coordinates for 180' phase-shifted miniature
speaker pair (Re = 70,000 ; f = 2500 Hz ; p'q =
0.02% ;UU =0.6).

PHI="deg represents a "worst case" scenario which would be
I ~required to produce an m =±6 helical mode. Again the

vertical white lines mark the location and extent of the
two speakers. From the amplitude contours, we observe
linear growth in the initial region just downstream of the
speakers, similar to the single active speaker in the pre-
vious case. The phase contours show that the modes
downstream of each speaker have the same constant
phase speed, but are shifted in phase by 1800 with
respect to each other. The region where the 180' phasePH- shift occurs is confined to the narrow azimuthal band
between the two speakers. Within that region, the ampli-
tude is near the background level. These low levels
result initially from the linear phase cancellation of the
1800 phase-shifted modes. The phase cancellation
region extends the full length of the linear regime and
effectively marks the region where nonlinear effects can

g06 "be neglected,
'B/=2- deg , The pseudo-temporal reconstruction from the

amplitude and phase distributions in the previous figure
are shown in Figure 14. These clearly show the 1800
phase shifted modes which are produced, and the narrow
region where phase cancellation occurs. Based on this
result, we expect to be able to initially excite the linear

. .>Pgrowth of helical modes with azimuthal wave numbers
as high as mn =±6. This is essentially consistent with the
theoretical results pertaining to thin circular shear layers.

3. Azimuthally Continuous Forcing
Figure 12. Reconstituted phase-conditioned iso-velocity In the remaining figures we present flow visuali-

contours as a function of streamwise and azimuthal zation results for the case with all 12 speakers being
coordinates for single miniature speaker (Re = 70,000 operated to produce either axisymmetric (m =0) or
f =2500Hz ; p'/q =0.02%; U/U, =0.6). m =±1 helical modes. The first of these in Figure 15,
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were performed at a relatively low Reynolds number
(Re=4000) and low frequency (f =30 Hz) in order to

+ expand both the linear growth region and mode wave
length. Since the use of m =±] helical is aimed at

_ exploiting nonlinear mechanisms, flow visualization to
specifically mark the linear amplification region is

+difficult. At the higher Reynolds numbers of our previ-
ous studies (in the range from 30,000 -< Re < 80,000),
that region occupies only the first few millimeters from
the exit lip. Within that region we expect to find two to

* three wave lengths of the fundamental mode. By the
time the visualized shear layer has rolled up into more or
less discrete vortices, the linear approximations are no
longer valid.

In Figure 15, the photographs were taken by
flashing the strobe light source in phase with the forcing
time series, with the camera lens open. By this approach
we are acquiring a phase conditioned average view of
the flow field. This provides an indication of the degree
of phase locking of the forced modes, especially when
compared to single realizations. It also can help to bring
out small amplitude coherent modes in their linear
stages of development. The photographs in Figure 15

9* represent an average of 30 realizations. Typical single
realizations, taken at the same conditions, are shown in
Figure 16.

Focusing first on the m =0 condition (Figure
16a), we observe a good azimuthally uniform wave
region and vortex roll-up. As pointed out in the discus-
sion on the mode development from the single active
speaker, the x-position of vortex roll-up, for a mode
undergoing linear growth, will be sensitive to the unifor-
mity of the initial amplitude distribution. The azimu-
thally uniform nature of the roll-up for the m =0 condi-
tion is an indication therefore that the individual speak-
ers have been properly tuned to yield a uniform ampli-

*tude and phase response. The adjustments for these
were done in the individual analog circuit stages as
explained in Section 11. The conditions documented in
Figure 16a is one indication that this was successfully
performed.

The m =±1 helical mode case on the bottom half
of Figures 15 and 16 nicely contrast the m =0 case. In
this case we have placed the azimuthal amplitude modu-
lation maximum at the top and bottom of the jet (and
photograph). The amplitude modulation minima then
fall on the horizontal center line of the jet and photo-
graphs. This is important for interpreting the flow visu-
alization records. At the azimuthal locations of the max-
ima (antinodes), we expect to see in the nonlinear
region, strong vortex roll-ups which capture a greater
percentage of smoke tracer particles. The vortex roll-
ups should appear staggered in the flow direction, from
one maximum to the other (out of phase) maximum.

Figure 14. Reconstituted phase-conditioned iso-velocity This corresponds to the top and bottom of the photo-
contours as a function of streamwise and azimuthal graphs for the present conditions. In the region of the
coordinates for 1800 phase-shifted miniature speaker azimuthal amplitude minima, we expect to see weaker
pair (Re = 70,000 ; f = 2500 Hz ; p'/q = 0.02% ; filaments of smoke tracer particles. At the nonlinear
U/U = 0.6). ("visualizable") locations, these connect the staggered

9
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."i.

Figure 15. Phase-averaged smoke-wire flow visualiza- Figure 16. Single realization smoke- wire flow visualiza-.
tions comparing forced axisymmetric (top) and ±1 tions comparing forced axisymmetric (top) and ±1
helical (bottom) modes at Re = 4000. helical (bottom) modes at Re = 4000.

vortices at the azimuthal maxima, and cross-over to pro- bottom is unmistakably present, indicating that although
duce a characteristic 'V' pattern (or 'Y' at the further flow visualization may be more difficult at the higher
nonlinear stages). The reconnection of the 'Y' takes Reynolds numbers, the dynamics of helical excitation
place at the azimuthal locations of the minima. This pat- appear to be similar in nature. In the case of Figure 17b,
tern is invariant in the streamwise direction, as opposed the 'Y' pattern is apparently still evident relatively far
to a single m =+I or -1 helix (see for example Figure downstream, although the streamwise wave length is
lb). Focusing on the photographs at the bottom of Fig- approximately a factor of two larger than the initial
ures 15 and 16, we observe exactly the characteristics wave length. Preliminary results suggest that this comes
we expect for the m =±I helical mode. Except for some about from a disconnection of the helical modes near the
fine scale disturbances, we observe little difference azimuthal location of the amplitude minimum, and vor-
between the single and phase averaged realizations, indi- tex "pairing" at the point of azimuthal amplitude max-
cating that within this region the flow is phase locked to imum. This observation is consistent with the recent
the initial mode input. results of intermodal subharmonic resonant interactions

Figure 17 shows single realization flow visualiza- obtained by Cohen and Wygnanski (1987).
tion records for m =±I mode forcing at two higher Rey- The previous figures correspond to cases when an
nolds numbers of Re = 10,000 (a) and 22,000 (b). The extrinsic source provided the mode time series input.
forcing frequencies in these cases were 150 Hz and 500 The flow visualization records in Figure 18 document
Hz, respectively. These are near the most amplified the conditions when the time series input to the speakers
values of the helical mode in the naturally excited jet. is provided by an intrinsic source. In this case the time
As we expect, the nonlinear vortex roll-up region occurs series is provided by a hot-wire velocity sensor placed in
at smaller streamwise distances, and considerable shor- the linear amplification region of the exit shear layer.
tening of the streamwise wavelength is observed with The resulting time series was then amplified and fed
increasing Reynolds number. However, in both cases back to the input stages of the analog circuits controlling
the characteristic staggered vortex pattern from top to the 12 miniature speakers, using an adjustable gain. The

10
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analog circuits still prescribed the desired azimuthal
amplitude variation to promote the simultaneous seeding
of ±1 helical modes, but the eigenfrequency selected by
the jet was one which satisfied a resonant feedback con-
dition (see Reisenthel, 1988). As a result of this condi- * -

tion. very pure discrete modes are produced spontane-
ously.

In Figure 18, the top view corresponds to the case
when the azimuthal antinodes are at the top and bottom
of the photograph. This is comparable to all the previ-
ously shown flow visualization records. In the bottom
view, we have interchanged nodes and antinodes to
place the minima on the top and bottom of the photo-
graph. In the top photograph, we observe strongly -

coherent staggered vortex formations indicative of the
±1 helical mode. This view can be directly compared to
that in Figure 17b which is at a compaable Reynolds
number although the fluctuation levis of Figure 18
correspond to a saturated limit-cycle. Making that com-
paison, we observe considerably more organization and
spreading of the shear layer. Comparing this view to
18b, we observe that the spreading is disproportionately
larger at the sites of the azimuthal maxima. That is the
larger amplitude for the resonant jet have resulted in a
distortion of the mean flow. The modification of the W
mean flow is derivable from the nonlinear difference
interaction (a, +n) - (a,t m) (0,±2m), where a,. is
the streamwise wave number. This characteristic is
obviously attractive from the point of view of mixing.

Figure 18. Single realization smoke-wire flow visualiza-
tions illustrating asymmetric jet spreading through no
dal (top) and antinodal (bottom) views, in the case of
helical enhanced feedback at Re = 20,000.

Above all, the results of Figure 18 demonstrate the feasi-
bility of using the "enhanced feedback" concept for
non-axisymmetric modes.

IV. Concluding Remarks

In this paper we have investigated the abilitv to
seed ±m helical modes with an azimuthal array of 12

- miniature speakers. The speakers were mounted at the
face of the jet, in close proximity of the exit lip. Meas-
urements of the mean flow character of the exit shear

., layer, and of the Strouhal number dependence of the
dominant initial instability modes on Reynolds number.
showed that our helical mode generator did not intro-
duce any modification of the jet conditions. Forcing
from a single active speaker produced, in the linear
region, a planar mode of varying initial amplitude
around the azimuth. This mode had a constant phasc
speed of C/LU =0.53, which compared well to lineat

Figure 17. Single realization smoke-wire flow visualiza- theory in a quasi-parallel shear flow. For a forcine
tions of forced ±I helical modes at Re = 10,0()0 (top) amplitude of p'/q = 0.02%. the azimuthal spreading rate
and Re = 22.000 (bottom). had a large value of 160'. This was attributed to the
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extreme receptivity at the jet exit. Drubka, R. E., 1981. Instability in the Near Field of

For two active speakers, operating 180' out of Turbulent Jets and their Dependence on Initial Condi-

phase, we observed the linear growth of 180-shifted tions and Reynolds Number. Ph.D. thesis, Illinois

planar modes. These amplified an reached saturation in Institute of Technology, Chicago.

a similar fashion to the single active speaker case. The Gutmark, E. and Ho, C. M., 1983. Phys. Fluids 26, 10.
only significant interaction occurred in the azimuthal
region between the speakers, where linear phase cancel- Kusek, S. M., 1989. M.S thesis, Illinois Institute of

lation took place, and background levels existed. This Technology, Chicago. In progress.

exercise confirmed quasi-two-dimensional linear theory Long, T. A., Petersen, R. A. and Wygnanski, 1. J., 1988.
predictions regarding the relative insensitivity of Bull. Am. Phys. Soc. 33, 2234.
amplification rates to azimuthal mode number, at least in
the limit of infinitely thin shear layers. From this we Mattingly, G. E. and Chang, C. C., 1974. J Fluid Mc.

expect, with out present arrangement, to be able to f 541.

excite helical modes up to m = ±6. Michalke, A., 1969. J. Fluid Mech 38, 765.
Utilizing 12 speakers, we have confirmed through

flow visualiza.ion our ability to excite m = ±1 helices in Michalke, A., 1971. Z. Flugwiss. 19, 319.

a full range of Reynolds numbers. In these cases, the Nagib, H. M., Drubka, R. E., and Reisenthel, P., 1989.
initial region of the jet was fully phase-locked. From Submitted to Phys. Fluids.
these, we were able to obtain the salient features of the
flow, consisting, in the nonlinear stages, of staggered Plaschko, P., 1979. J. Fluid Mech. 92, 209.

vortices at the azimuthal positions of amplitude maxima, Reisenthel, P., 1988. Hybrid Instability in an Axisym-
and the formed 'Y' pattern connections to these. The metric Jet with Enhanced Feedback. Ph.D. thesis,
junction of the 'Y' pattern forms at the location of Illinois Institute of Technology. Chicago.
amplitude minima. This pattern is invariant in the flow
direction. Reisenthel, P., Nagib, H. M., and Corke, T. C., 1988.

Bull. Am. Phys Soc. 33, 2271.
We have also shown that intrinsic forcing of the

jet through enhanced feedback provides similar dynam- Shakib, F., 1984. Evolution and Interaction of Instabil-
ics as for the m = 0 modes, documented by Reisenthel ity Modes in an Axisymmetric Jet. M.S. thesis, I1li-
(1988). This alone or in combination with the m = 0 nois Institute of Technology, Chicago.
mode offers rich possibilities for exploiting the resonant
growth of controllable unstable modes.
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SEEDING OF HELICAL MODES IN THE INITIAL REGION
OF AN AXISYMMETRIC JET
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Chicago, Illinois 60616

Abstract

Active control of fundamental two- and three-dimensional amplified modes
in an axisymmetric jet is presented. This is done by introducing localized acoustic
disturbances produced by an azimuthal array of miniature speakers placed in the
close proximity of the jet lip on the exit face. The independent control of each
speaker output allows different azimuthal amplitude and phase distributions of
periodic input pressure disturbances. Coupled with this was the development and
use of a circular smoke-wire for visualizing shear layer modes around the complete
jet circumference.

I. Introduction

The role of three-dimensional disturbances in axisymmetric jets has been the
focus of a number of studies in the last two decades. Although most of these studies
are theoretical and have addressed the linear stability properties of helical modes,
recent attention has been given to the possibility of strong intermodal resonant
interactions. The latter mechanism was experimentally demonstrated by Cohen and
Wygnanski (1987b), and reinforces the need to consider the potential of 3-D modes
which may be considered 'dormant' by linear standards.

Perhaps the most recent of theoretical analyses of the stability of azimuthal
modes is that of Ahmadi-Moghadam (1986), which considers a thin circular shear
layer with a Blasius prof'le. The use of this self-similar profile is justified on the
basis of experiments with laminar exit conditions (see Drubka, 1981). In this study,
the effect if curvature was represented by the ratio 6/D, and the results compared to
Michalke's (1971) hyperbolic tangent profile. Although small differences in the
mean velocity profile were found to produce sizable quantitative discrepancies,
several general conclusions could be drawn: i) the phase speed depends strongly on

1 Graduate Assistant
2 Associate Professor

3 Visiting Assistant Professor
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0

a azimuthal wave number (m) at low frequencies, in particular, the non-dispersive
character of the instability waves increases with increasing m; ii) the linear growth
rates decrease with increasing m; and iii) in any event, these effects are accentuated
by curvature, and most felt for low Strouhal number. An earlier inviscid spatial
analysis by Michalke (1969) for a 2-D hyperbolic tangent profile showed similarly
that 2-D modes are always more amplified and that the wave dispersiveness and
amplification rate (-cri) both decrease with increasing spanwise wave number.

In contrast to the 'locally parallel' theories, Plaschko (1979) used a multiple
scales method similar to the approach of Crighton and Gaster (1976), in order to
properly capture the slowly diverging nature of jet flow. A higher gain was found for
the axisymmetric mode at higher Strouhal numbers, whereas lower Strouhal
numbers promoted higher gain for m = 1, at farther downstream distances. In 0

addition, Plaschko (1979) showed that the higher order helical modes ( m > 2)
were always less amplified than their axisymmetric (m = 0) and first helical (m =

±1) counterpart.
Mattingly and Chang (1974) reported similar results using inviscid spatial

theory applied to a family of experimentally determined velocity profiles in a low
Reynolds number water jet. They found that the axisymmetric mode dominates the
jet column initially, but that the m = ±1 mode becomes the most amplified, past x/D
= 3. Their results also indicated that the m = :2 mode was never dominant.
Recently, Cohen and Wygnanski (1987a) also performed an inviscid linear spatial
stability analysis of analytically-fitted experimental profiles and obtained good
agreement of the mode shapes in the initial region of the jet. The importance of jet
divergence was incorporated through the parameter R1 /2/0 (the ratio of the radius
where U/Uj = .5, to the local momentum thickness). The results of their analysis

qualitatively corroborate those of Ahmadi-Moghadam (1986). In particular, they 0
substantiated analytically that when the ratio of spanwise to streamwise wave
numbers was small, all modes behave essentially as if the mean flow were two-
dimensional.

In spite of the differences in the analytical approaches taken by the above
investigators, it is clear that the two linearly dominating modes on a jet column are
the fundamental (m = 0) and first helical (m = ±1) modes. Although their linear
characteristics are virtually indistinguishable at the early stages i.e. when the shear
layer is thin, compared to the jet diameter, there is a greater likelihood to observe
and characterize the helical modes at the larger downstream distances, e.g. x/D > 3.
This may explain in part why the few available experimental studies of helical mode
instability appear to have focused on the nonlinear interactions produced by these
modes, rather then on the linear stages per se. A frequently used evidence of such
interactions is the mean flow distortion produced by the simultaneous forcing of
modes with same frequency (see, e.g., Cohen and Wygnanski, 1987b, and Long et
at., 1988). Admittedly, the concept of resonant interactions, and in particular:
subharmonic resonant interactions, appears to be a highly promising avenue of
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research for controlling jet flows. For example, Ahmadi-Moghadam's (1986)
analysis predicts the possibility of a Craik-type (1971) triad interaction in the jet,
leading to "explosive growth".

Although it is our goal to investigate this issue experimentally in a
forthcoming study (Kusek, 1990), this manuscript describes the results of a
preliminary investigation aimed at filling some gaps in the available experimental
data dealing with the truly lnear (initially very low amplitude) stages of helical
instabilities. The use of very low initial amplitudes to seed non-axisymmetric modes
is made possible in part by: t) the design of a helical mode generator (described
herein) relying on a receptivity mechanism at the lip, and ii) by the use of an ultra-
low freestream turbulence facility. It should be noted that controlled input levels of
acoustic excitation also provide us with a means of assessing amplitude threshold
effects for nonlinear resonances.

In addition, low excitation levels constitute a reahistic way of seeding
instability waves, because these levels are of comparable strength to those generated
by the pressure feedback which occurs naturally in jets (Drubka, 1981). Such effects
may, in fact, be related to the temporal switching which has commonly been
observed between axisymmetric and helical (m = ±1) modes (Mattingly and Chang,
1974, Shakib, 1985, Corke et al., 1990), and for which no satisfactory explanation has
yet been provided. Our primary and long-term objective in this study is to
understand the mechanism controlling the temporal switching, coupled with the
investigation of new ways in which to alter jets, using controlled two- and three-
dimensional excitation. In the present paper, our approach to seeding low initial
amplitude ±m helical disturbances, the method for visualizing these, and preliminary
results from flow visualization and hot-wire surveys are presented.

II. Experimental Apparatus

This experiment was performed in the same jet facility that was used by
Drubka (1981), Shakib (1985), Corke et al. (1985, 1990), Reisenthel et al. (1988,
1990). Its very low core turbulence intensity level (u'/Uj =_ 0.05%) makes it well

suited for measurements on stability and mode interaction. The characteristics of
this jet have been extensively documented in these investigations in terms of
eigenmode distributions of the fundamental instability and interacted modes, along
with their dependence on changing initial conditions including Reynolds number,
initial shear layer thickness and core disturbance level.

11.1 Helical Mode Generator
In order to benefit from the results of previous measurements, special care

was taken in the design of a fixture for holding an array of miniature speakers at the
exit plane of the jet. The top of Figure I shows a schematic of the exit region of the
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jet facility. The exit diameter, D, is 5.08 cm. Close to the exit edge are eight
pressure taps which provide time series information on the unsteady pressure field
at the jet exit. The speaker fixture (same scale) for holding the 12 downstream- S
facing miniature speakers is shown at the bottom of the figure. The fixture assembly
is designed to slip over the exit face of the jet without introducing any additional
development length and thereby affecting the initial shear layer momentum
thickness. (A photograph showing the fixture with 12 speakers mounted on the jet
exit is shown in Figure 5.) •

To excite a helical mode with positive wave number m (clockwise moving),
and frequency w, the periodic time series to any individual speaker located at
azimuthal angle y would be Al(t,-y) = Asin(m'y-wt + i1). Here, 01 is an arbitrary
phase shift. The opposite going, equal amplitude helical mode with wave number
-m, would be produced by the periodic function A2(t,7y) = Asin(-m-y-wt+ 42). The
superposition of these two periodic functions yields A(t,y)=2Asin(Wt
+ (01 + 462)/2)cos(m-y+ (461-02/2). Therefore, to produce equal and opposite helical
modes with azimuthal wave number ±m and frequency w, each speaker will operate
with a periodic input, sin(-wt+(01+ 42)/2), with each speakers amplitude 0

determined by its azimuthal position according to: 2Acos(m'y+ (01-,2)/2). With 12
speakers it may be possible to excite helical modes with azimuthal wave numbers up
to m = ±6. The maximum azimuthal wave number will correspond to a ratio of
streamwise to spanwise wave numbers of approximately 2.6 (wave front leaving at 0
a-210 from the jet lip)4 . For reference, with the azimuthal wave number m = ±1,
this angle will be approximately 90, corresponding to a streamwise to spanwise wave
number ratio of 16.

Figure 2 shows the circuit schematic for driving the speakers to force
simultaneously or separately axisymmetric and ±m helical modes. The time series •
for each of these modes are input separately. This allows them to be at different
frequencies and initial amplitudes. The first three stages of op-amp circuits for each
mode input remove any dc component and amplify the signal up to a factor of 400.
This stage is primarily for our experiments with enhanced feedback (Reisenthel et
al., 1988, 1990), where the hot-wire anemometer output is fed directly into the
forcing input. If the forcing series is supplied by a function generator or computer
D/A output, these stages could be omitted.

To force ±m helical modes, we require the amplitude of the input to the
speakers to vary in the azimuthal direction like cos(m-y). This is accomplished with
the variable gain amplifier stage marked G('y) on the helical mode circuit path.
Each variable gain amplifier feeds a speaker pair which are on opposite azimuthal
positions of the jet exit. For the 12 speakers, these pairs are 1 and 7, 2 and 8, ..., 6
and 12. These speaker pairs operate in phase for even azimuthal wave numbers,

0
4 Assuming that the streamwise wave length, , is of the order of 10 mm
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and 1800 out of phase for odd wave numbers. In the former case, the switch setting
in Figure 3 is in position 1. In the case of the latter, it is in position 2.

The time series for the axisymmetric mode is added to helical mode input
just prior to the outputs to each speaker. This added stage also provides variable
gain control to compensate for any amplitude transfer function differences between
individual speakers. A unity gain follower is used as a final stage for impedance
matching.

We have verified the sound pressure level output from the individual
speakers from one of the pressure ports at the jet exit. This was done by rotating
the speaker fxture (Figure 1) to sequentially place each speaker above the active
port. A small tubulation transferred the pressure fluctuations to the microphone of
a sound level meter. The dimensionless output of the sound level meter, on a linear
scale, is plotted against the azimuthal angular position in Figure 3. The solid line is
the ideal rectified cos(-y) amplitude variation required to seed the m = ±1 helical
mode.

11.2 Circular Smoke-wire
Since we are focusing on the development of three-dimensional modes, we

adapted the smoke-wire technique (Corke et al., 1977) to view the shear layer
around the complete, or selected portion(s) of the azimuthal coordinate. The
method for doing this is shown in the schematic drawings in Figure 4 (a and b).

The basic approach was to suspend in a nonintrusive manner a 0.1 mm
diameter stainless steel wire in a circular shape just outside the shear layer of the
jet. This was done by passing the wire through the eyes of long tapestry needles
pressed into the ends of aluminum support rods. A total of 16 support rods were
used as shown in Figure 4a. The rods were held by passing them through radial
holes in an outer support ring. This ring was made of plastic acrylic to provide
electrical isolation. The rods were fixed in place using thumb screws. The radius of
the wir 'oop was set by adjusting the length of the support rods extending through
the ring.

The bottom most support rod in Figure 4a has two needles mounted on its
end. These two are slightly offset to allow the wire to pass and close the circle
without touching. This can be seen in the side view at the top of Figure 4b. The two
needles are also electrically isolated from each other. An electrical lead is attached
to one of these, as shown in Figure 4a.

The stainless steel wire passes through holes in the support ring at the
bottom, and is held taut on electrically isolated take-up reels (Figure 4a). The holes
where the wire passes through the support ring are actually oil reservoirs. To
prevent oil from dripping out the bottom, the wire passes through small diameter
tubing (0.2 mm inside diameter) glued in as shown in the bottom of Figure 4b. A
hand crank is used to move the stainless steel wire from one reel to the other. In
doing so, the wire rises through one oil reservoir and carries a coating of oil until the

5
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wire in the circular loop is coated completely. In the process, a small amount of oil
will be captured by the needle eyelets. This turns out to be beneficial in that it
results in numerous reservoirs and decreases the motion of the wire required to coat
the loop. As with the traditional smoke-wire technique, the oil that coats the wire
collects in small droplets along the wire due to a surface tension instability. These
provide sites for smoke streaks when the wire is resistively heated.

The portion of the wire loop that is resistively heated is determined by the
position of the aluminum support rod where the other electrical lead is clipped. For
example, clipping to the bottom most rod (Figure 4a) will resistively heat the full
360 degree circle. Clipping to the top most rod will cause the left 180 degree
portion to heat. In this manner, we can introduce smoke streaks in any number of
the wire sectors between support rods.

For the visualized flowfield presented here, the circular smoke-wire was
located as close to the jet exit as possible. The support rods were adjusted to place
the circular wire at the outer edge of the shear layer. This placement can be seen in
the photograph in Figure 5. When operated, the smoke streak lines are entrained
into the shear layer, where they mark the coherent motions as they developed
downstream.

The special flexibility of this arrangement is that the apparatus can be
located at any downstream position, with the radius of the wire loop being adjusted
to account for the jet spreading. In addition, wire shapes other than circular are
possible, to accommodate conditions which lead to azimuthal variations in mode
amplitude or spreading rate.

Ell. Results

I.1 Passive Effects
Any passive effects of placing the speaker holder and speakers onto the exit

of the jet were first documented. Our concern was that by its passive presence in
the sensitive region at the jet exit lip, the natural instability character would be
altered. Multiple sets of mean velocity profiles through the shear layer over our full
range of Reynolds numbers showed no discernible effect (Kusek, 1990). A more
sensitive indicator is the Reynolds number dpendence of the most amplified
modes. These are shown in Figure 6 in terms of the fundamental axisymmetric
mode at frequency Jo, its subharmonic jo/2 and the m = ±1 helical mode at
frequency fl. For cases when the exit boundary layer thickness is small compared to

the jet diameter, inviscid linear stability theory predicts that the instability modes
scale with Strouhal number based on local momentum thickness (Sto). For this
particular jet facility (Drubka, 1981, Drubka et al., 1989), upstream of the location
corresponding to subharmonic resonance, 6 grows less than a few percent.
Consequently, the measured 0 is approximately equal to the erit momentum
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thickness. In cases when the exit boundary layer is laminar, such as here, the
boundary layer momentum thickness is inversely proportional to the square root of

the Reynolds number (Blasius profile). Since Ste = constant, then StoD/O - 0-1 , or

StD - Rel/ 2 .

This is seen to be the case without (top) ani with (bottom) the HMG for
these three natural dominant modes. The slopes of these curves, which is

* proportional to Sto, are given in the insets of the two graphs. For the case without
the HMG, the St 0 forfo is 0.0144. Gutmark and Ho (1983) have tabulated values of

St0 for the fundamental axisymmetric mode from experiments in nine different jet
facilities. The values that they report range from 0.012 to 0.018. Drubka (1981)
reported a value for this jet of 0.013. Comparing our case with the HMG we
observe a slight change in St0 for both fo and fl. The difference of course is well
within the type of scatter documented by Gutmark and Ho. The St0 for the fo/2

mode remains the same. The velocity distributions and the measured momentum
thicknesses showed no significant effect due to the HMG. We therefore attribute
the slight difference in the slopes to a change in the receptivity at the lip, rather than
a change in entrainment conditions, which would presumably have changed 0. This
is obviously a small effect and otherwise these dominant natural modes develop
according to linear theory in either configuration.

M.2 Active Forcing
As described in Section II, the ±m helical mode forcing requires an initial

prescribed azimuthal amplitude modulation at the lip of the jet. Ideally, this would
occur in an azimuthally-continuous fashion. In our situation, the initial condition is
applied in an azimuthally-discrete fashion from each of the 12 speakers. We
therefore were interested in first examining the response of the shear layer to a
periodic disturbance produced by a single operating speaker.

The active effect of a single miniature speaker is documented in Figures 7
and 8. Figure 7 shows the streamwise development of amplitude and phase at a
fixed Reynolds number, along the similarity line U/Uj = 0.6, at a constant
azimuthal position. The jet conditions and forcing frequency correspond to the fo =
2500 Hz case of Shakib (1985) and Corke et al. (1985), produced by a far-field
sound source. In Figure 7, we compare the streamwise development between such a
far-field source and the single speaker of the HMG. As is evident, the comparison
is excellent, especially in the initial linear growth and saturation region. In the case
of the far-field sound source, the excited mode will be axisymmetric. We do not
expect the same to be true for excitation with the single miniature speaker at the jet
exit. A comparison such as the one provided in Figure 7 also allows us to calibrate
the true forcing effectiveness of the near-field sound source, as compared to
traditional far-field loud-speaker excitation.

7
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For the same conditions, with the single active speaker, the azimuthal
amplitude and phase distributions at different x-positions are presented in Figure 8.
This was sampled at the radial position where U/Uj = 0.6, as in Figure 7. G

The amplitude and phase are presented as isocontour levels seen as
alternating black and white bands. The spatial domain is presented as a flat
projection with the azimuthal coordinate -y on the abscissa, and the x-direction,
made non-dimensional using the jet diameter, on the ordinate. The white vertical
lines in the center mark the location and extent of the single speaker. The white

lines at both ends (-y=±600) mark the valid region of the phase, where the linear
coherence remained above 0.7.

The amplitude is log based (dB) so that contour bands spaced equally in x
indicate constant linear (exponential) growth. Such - linear growth region is seen to
exist in the initial region directly downstream of the active speaker. This extends to
approximately x/D = 0.20 (x/X=2.2), where nonlinear effects result in energy
saturation of this mode. For this mode, the point of energy saturation marks the
position of the first vortex roll-up (see, e.g., Shakib, 1985). On either side of the
speaker, the energy spreads and feeds the same mode. This mode is seen to amplify S
at approximately the same spatial rate, but because the initial amplitude decays in
the azimuthal direction (see Figure 8), the development length, before reaching
saturation, is shifted downstream. From the phase distribution at the top of the
figure, we observe a constant phase development in the azimuthal direction. The
number and width of phase contour bands in the x-direction is indicative of the 0
phase velocity of this mode. Therefore, the phase distribution infers that the
speaker is exciting a single mode which travels at a constant phase speed
(Cr/Uj=0.54), everywhere within the valid azimuthal region. Flow visualization,
which primarily marks the rolled up vortex, would show for this case what would
appear to be an inclined axisymmetric mode. However, the feature implying the 0
inclination would actually be a result of the azimuthal distribution of the initial
amplitude of this mode which provides, away from the active speaker, a longer
development length before saturation and vortex roll-up.

Figure 9 shows comparable results for the case of two active neighbor

speakers which are of nominally equal amplitude but 1800 out of phase. This
represents a *worst case" scenario which would be required to produce one sixth of
the m = ±6 helical mode. Again the vertical white lines mark the location and extent
of the two speakers. From the amplitude contours, we observe linear growth in the
initial region just downstream of the speakers, similar to the single active speaker in 0
the previous case. The phase contours show that the modes downstream of each

speaker have the same constant phase speed, but are shifted in phase by 1800 with

respect to each other. The region where the 1800 phase shift occurs is confined to
the narrow azimuthal band between the two speakers. Within the region, the
amplitude is near the background level. These low levels result initially from the
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linear phase cancellation of the 1800 phase-shifted modes. The phase cancellation
region extends the full length of the linear regime and effectively marks the region
where nonlinear effects can be neglected.

M.3 Azimuthally Continuous Forcing
In the remaining two figures we present flow visualization results for the case

with all 12 speakers being operated to produce either axisymmetric (m = 0) or m =
±1 helical modes. These were performed at a relatively low Reynolds number (Re
= 4000) and low frequency (f = 30 H1z) in order to expand both the linear growth
region and mode wavelength in physical space. Since the use of m = ±1 helical
modes is aimed at exploiting nonlinear mechanisms, flow visualization to specifically
mark the linear amplification region is difficult. At the higher Reynolds numbers of
our previous studies (in the range from 30,000_< Re < 80,000), that region occupies
only the first few millimeters from the exit lip. Within that region we expect to find
two to three wavelengths of the fundamental mode. By the time the visualized shear
layer has rolled up into more or less discrete vortices, the linear approximations are

* no longer valid.
In Figure 10, the photographs were taken by flashing the strobe light source

in phase with the forcing time series, with the camera lens open. By this approach
we are acquiring a phase-conditioned average view of the flow field. This provides
an indication of the degree of phase locking of the forced modes, especially when

i compared to single realizations. It also can help to bring out small amplitude
coherent modes in their linear stages of development. The photographs in Figure
10 represent an average of 30 realizations. Typical single realizations, taken at the
same conditions, are shown in Figure 11.

Focusing first on the m=0 condition (Figure 11, top), we observe a good
0 azimuthally uniform wave region and vortex roll-up. As pointed out in the

discussion on the mode development from the single active speaker, the x-position
of vortex roll-up, for a mode undergoing linear growth, will be sensitive to the
uniformity of the initial amplitude distribution. The azimuthally uniform nature of
the roll-up for the m = 0 condition is an indication therefore that the individual
speakers have been properly adjusted to yield a uniform amplitude and phase
response. Results from flow visualization such as in Figure 11 are one indication
that this was successfully performed.

The m = ±1 helical mode case on the bottom half of Figures 10 and 11 nicely
contrast the m =0 case. In this case we have placed the azimuthal amplitude
modulation maximum at the top and bottom of the jet (and photograph). The
amplitude modulation minima then fall on the horizontal centerline of the jet and
photographs. This is important for interpreting the flow visualization records. At
the azimuthal locations of the maxima (antinodes), we expect to see in the nonlinear
region, strong vortex roll-ups which capture a greater percentage of the smoke
tracer. The vortex roll-ups should appear staggered in the flow direction, from one
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0

maximum to the other (out of phase) maximum. This corresponds to the top and
bottom of the photographs for the present conditions. In the region of the
azimuthal amplitude minima, we expect to see weaker filaments of tracer smoke. 0
At the nonlinear (*visualizable) locations, these connect the staggered vortices at
the azimuthal maxima, and cross-over to produce a characteristic 'V' pattern (or 'Y'
at the further nonlinear stages). The reconnection of the 'Y' takes place at the
azimuthal locations of the minima. Except for some fine scale disturbances, we
observe little difference between the single and phase averaged realizations, 0
indicating that within this region the flow is phase locked to the initial mode input.

IV. Concluding Remarks

In this paper, we have investigated the ability to seed ±m helical modes with
an azimuthal array of 12 miniature speakers. The speakers were mounted at the
face of the jet, in close proximity of the exit lip. Measurements of the mean flow
character of the exit shear layer, and of the Strouhal number dependence of the
dominant initial instability modes on Reynolds number, showed that our helical
mode generator did not introduce any passive modification of the jet conditions.
Forcing from a single or 1800 shifted neighbor pair of active speakers were used to
confirm quasi-two-dimensional linear theory predictions regarding the relative
insensitivity of amplification rates to azimuthal mode number, at least in the limit of •
infinitely thin shear layers. From this we expect, with our present arrangement, to
be able to excite helical modes up to m = ±6. Coupled with the use of the circular
smoke-wire, this provides the basic setup to reach our long-term objective, to study
three-dimensional mode resonance mechanisms in jets.
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FIGURES

Figure 1. Schematic of jet nozzle (top) and low disturbance fixture (bottom) for
holding 12 miniature speakers at jet exit face; as well as mesurement
coordinate system.

Figure 2. Schematic of circuits used to condition time-series input to produce
0 axisymmetric and/or +m helical modes from 12 miniature speakers.

Figure 3. Comparison of azimuthal variation of normalized sound pressure level
from 12 speakers to ideal variation for axisymmetric (dashjed) and helical
(solid) modes.

Figure 4. Schematic drawing of circular smoke-wire arrangement.

Figure 5. Photograph of jet exit face with 12 miniature speakers and circular smoke-
wire in place

Figure 6. Strouhal number dependence of dominant natural instability modes
without (top) and with (bottom) helical mode generator (inactive).

Figure 7. Comparison between near-field and far-field acoustic excitation for the
streamwise development of disturbance amplitude (top) and phase
(bottom) (Re = 70,000; f = 2500 Hz; p'/q = 0.02%; U/Uj = 0.6).

Figure 8. Spatial distributions of phase (top) and amplitude (bottom) as a function
of streamwise and azimuthal coordinates for single miniature speaker (Re
= 70,000; f = 2500 Hz; p'/q = 0.02%; U/UJ - 0.6).

Figure 9. Spatial distributions of phase (top) and amplitude (bottom) as a function

of streamwise and azimuthal coordinates for 1800 phase-shifted miniature
speaker pair (Re - 70,000; f = 2500 Hz; p'/q = 0.02%; U/Uj = 0.6).

Figure 10. Phase-averaged smoke-wire flow visualizations comparing forced
axisymmetric (top) and ±1 helical (bottom) modes at Re = 4000 (f = 30
Hz).

Figure 11. Single realization smoke-wire flow visualizations comparing forced
axisymmetric (top) and ±1 helical (bottom) modes at Re = 4000 (f = 30
Hz).
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Abstract

The existence of a supercritical Hopf bifurcation in Reynolds number is
experimentally demonstrated for the case of axisymmetric enhanced feedback. This
was achieved by placing a miniature hot-wire probe at a fixed location in the initial
shear layer of a low disturbance axisymmetric jet (60,000 < Re D < 80,000;

Reei = 170), and feeding the velocity signal into an array of speakers close to the

point of receptivity of the separating shear layer. Quantitative comparisons with the
temporal Landau equation at a given streamwise position are presented. Phase
averaged measurements using a second 'traveling' probe moving in the range, 1.0 <
X/ < 4.0), were obtained by repeated opening and closing the feedback loop under
computer control. The results indicate that while both real and imaginary parts of
the Landau equation appear t0 be largely independent of space when the flow is
almost parallel (X/. < 1.5), the landau coefficient, Cr, decreases by several orders

of magnitude within a fraction of the eigenfrequency wave length.
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14. Fonctions de transfert des filtres passe bande FIR
utilises pour la demodulation d'amplitude .
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15. Fonctions de transfert des filtres FIR utilises pour
la demodulation d'amplitude.

* 16. Illustration de la m~thode de traitements des
donneesti

17. Variations de la frdquence propre en fonction du
nombre de Reynolds: a) frdquence mesuree A l1analyseur
de spectre en fonction de Re b) frdquence calcu1de par
transformde de Fourier sur les donndes acquises en
fonction de la frdqu.ence nmesurde A l'analyseur de
spectre . L, 2.

18. Variations temporelles de l1amplitude d6modulde pour
Re = 73000 a) X = 9mm b) X = 15mrm

19. Variations spatio-temporelles de l'amplitude de la
frdquence propre (premier harmonique) pour Re = 76000
(premi~re vue) . 7 4,

20. Variations spatio-temporelles de l1amplitude de la
frdquence propre (premier harmonique) pour Re =76000

(seconde vue).

21. Variations spatiales de l'amplitude spectrale de
1'harmoni'iue et du sous-harmonique du mode axisymdtriq-ue L

22. Diagramne contour des variations spatio-teinporelles
* de l'amplitude de la fr~quence propre (premier

harmonique) pour Re = 76000 .1

23. Diagramme contour des variations spatio-temporelles
de l'amplitude de la frdquence propre (premier
harmonique) pour Re = 71000 .AT.

24. Diagramme contour des variations spatio-temporelles
de !'amplitude de la frdquence propre (premier
harmonique) pour Re = 68000 .

25. Variations spatio-temporelles de l1amplitude de la
* frequence propre (sous harmonique) pour Re =76000

(premiere vile) . ....

26. Variations spatio-temporelles de l1amplitude de la
frequence propre (sous harmonique) pour Re =76000

(seconde vue) .. ..

27. Diagramne contour des variations spatio-temporelles
de l'amplitude de la frdquence propre (sous harmonique)
pour Re = 76000 . . ... .S

28. Variations spatiales du taux de croissance
* ~exponentielle pour Re = 71000. . .

29. Variations du taux de croissance exponentielle en
fonction du nombre de Reynolds (mesures de Reisent)-cl)

* LY
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30. Variations du taux de croissance exponeritielle en
fonction du nombre de Reynolds a) x = 5 mm b) x =9 mm

31. Variations spatiales de ln(1/$ 2 )

32. Ddtermination deI - - - - -

33. Variations spatiales du logarithme du coefficient de

Landau
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INTRODUCTION

Le but ultime de l'6tude que j'ai effectude a l'Illinois
Institute of Technology du 13 mars au 8 juillet 1989 4tait

* la determination des coefficients complexe4 de 1'dquation Ue-
Ginzburg-Landau dans le ddveloppement initial d'un jet d'air
excitd en boucle fermde par des fluctuations de pression.

Mon stage a comportd les dtapes suivantes:
- Une premi&re pdriode de formation et de mise au point

de problhmes essentiellement techniques. Cette dtape
* d'environ onze semaines ne sera nullement ddcrite dans la

suite de cet expose. Sans elle, ii eiat toutefois dtd
impossible d'utiliser le jet dans de bonnes conditions
expdrimentales.

- Une seconde 0-tape de prdparation et rdalisation du
travail expdrimental d'une durde de trois semaines.

* - Enf in les trois derni~res semaines, consacrees au
traitement des donndes et a l'analyse des resultats.

Faute de temps, 1'utilisation des rdsultats n'a Pu 6tre
mende A tez-me. Seule la determination spatiale du
coefficient de Landau a dtd possible et non celle de tous
les coefficients de 1'dquation de Ginzburg-Landau.Mdme si

* 1'objectif initial n'a pas dt atteint, 1'etude a cependant
1ivrd des rdsultats intdressants qui feront l'objet d'une
prdsentation au 42nd Annual Meeting of the Division of Fluid
Dynamics of the American Physical Society.
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I DISPOSITIF EXPERIMENTAL

I.1 L'icoulement

L'dquipement utilisd est reprdsentd figure 1. La chambre
d'uniformisation contient de la mousse qui rdalise
l'isolement acoustique en aval ainsi qu'une sdrie de grilles
en nid d'abeille, d'ecrans congus pour produire en sortie un
dcoulement uniforme & tr~s faible intensitd de turbulence. A
la sortie de la chambre, l'6coulement traverse un cylindre
de plexiglass de 15,2 cm de diam~tre; puis est accelere dans
une contraction du cinqui~me ordre de rapport 1/9.

Le diambtre du jet est alors de 5,1 cm et la vite--se de
1'6coulement est comprise entre 10 et 30 rn/s. A la sortie de
la contraction, l'dco~lement est laminaire'avec un niveau de
turbulence inffdrieur A 0,05%.

L'air provient d'un rdservoir "basse" pression & environ
3,4 atm. Un systO-me de rdgulation de pression permet de
maintenir le nombre de Re constant & 1% pre-s pendant une
longue periode. L'arrivde d'air est contr6lde avec precision
grcice a une valve dquipde d'un moteur electrique.
L'dcoulement est ensuite amend dans une section de
transition par un tuyau d'environ 5 cm de diam~tre.

La section de transition contient dgalement de la mousse
pour l'isolement acoustique.

1.2 Instruments de mesure0

Une sonde a fil chaud est rnontde sur un mdcanisme
permettant son d~placement dans les trois directions de
l'espace. Deux moteurs pas A pas contr~lent les directions x
et y de la sonde (cf figure 2) avec une prdcision de 10 /Am
en x et de 5 ,"m en y. Par comparaison, le diam~tre du fil de0
tungstene qui constitue la partie sensible de la sonde est
de 3,8 A~m celui des dents de cette sonde 0,076 mm;
l'utilisation d'une sonde miniature permnettant naturellement
de limiter les intdractions avec l'6coulement. Une deuxie-me
sonde miniature, diamdtralement opposde A celle de mesure,
est utilisee pour la boucle de retour.

Les mesures de vitesse sont effectudes dans la direction
de l'ecoulemeit a l1aide de la sonde ddcrite ci-dessus et
d'un anemometre tous deux "faits maison", c'est-&-dire
fabriques par llatelier dlectronique du ddpartement. Le
signal de sortie de l'andmombtre est recentrd sur zero puis
amplifid afin d'augmenter la prdcision de l'acquisition en
utilisant au maximum les possibilitds de l'ordinateur (-5V <
Ua cqu is < 5V).
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Le transducteur de pression Validyne DP45 et le
ddmodulateur Validyne CDl5 mesurent la vitesse du jet a la
sortia de la contraction,ie le nombre de Reynolds. Le

* transducteur, qui inesure la pression statique en amont de la
contraction, est calibre, a l'aide d'un
manom~tre.L'andmometre est lui rdquli~irement calibrd grace
au transducteur. Un souci particulier a ete attache & la
validitd de la calibration de l'andmometre, principal
appareil de mesure. Le senseur de la sonde ('le fil chaud")
dtant tr~s sensible aux variations de tempdrature, il a
sembld n~cessaire d'effectuer des corrections de teznpdrature
dans les. divers algorithmes, de mesure de vitesse -et de
calibration. La temperature de l'6coulement est mesuree a
l'aide d'une thermistance et acquise en temps rdel par
l'ordinateur. La prise en compte dle ce param~tre
suppldmentaire augmente la precision des mesures et la

* longevitO- de la calibration du transducteur. Avant chaque
experience, cette derni~re se trouvait contr6lde et une
recalibration avait lieu le cas dchdant.

L'analyse en temps rdel des frdquences caractdristiques
des deux signaux produits par les sondes et la determination
de leur cohdrence sont fournies par l'analyseur de spectre

* HP3582A a deux voies d'entree. Le signal d'entree d'un haut-
parleur et le signal de mesure de l'andmom~tre sont
visualisds sur un oscilloscope Philips PM3055.

Les fluctuations de pression destinees A forcer
1'6couleinent sont produites par une sdrie de 12 haut-
parleurs placds en couronne A la sortie de la contraction

* (cf figure 2). Un r~glage pr~liminaire des haut-parleurs
garantit la symdtrie de revolution de leur signal de sortie
(& 2,5% prds).

Pour dviter les effets; de replieinent de spectre lors d,,,
traitement des donndes, le signal acquis passe au travers
d'un filtre de frdquence analogique Ithaco 4212.

1.3 Equipements informatiques

Deux ordinateurs de type MASSCOMP ont dt utilisds pour
cette etude:

* - Un ordinateur de type DAPS.MCP4 pour l'acquisition des
donnees, capable de conversion A/D & une frdquence de 100000
Hz et de conversion D/A & 330000 Hz. En plus de
l'acquisition (vitesse de 1'6coulement, tempdrature et
projection de la vitesse suivant x), ce MASSCOMP assure le
pilotage des moteurs pas A pas de la sonde de mesure et du

*moteur de la valve d'alimentation en air.
- L'ordinateur de traitement (DAPS.MCP1) situd dans la

salle informatique regoit les donndes & traiter par
l'intermediaire du rdseau ETHERNET. Il est dguipd d'un
microprocesseur 68020 et d'une importante mdmoire (500
Mbytes en tout).
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IEXCITATION DU JET EN BOUCLE FERHEE

11.1 Desciption generale

L'excitation du jet en boucle fermee est un moyen
artificiel, de reinjecter des pertubations issues du jet dans
sa couche-limite initiale (cf figure 2).La "boucle fermee"
comprend quatre dldments:

- Le signal de vitesse, mesurd par un f il chaud, est
amplifid et injectd comme signal d'entrde dans les haut-
parleurs. les haut-parleurs produisent alors en sortie une
fluctuation de pression proportionnelle en premidre
approximation & la fuctuation de vitesse' (ii est suppose
que, localement, ii existe une relation lindaire entre la
tension du f ii chaud et la vitesse).Les haut-parleurs et le
circuit dlectronique constituent la premiO-re brariche de la
boucle, L'amplification du signal de vitesse est A gain
variable.

- La deuxidme branche est le chemin acoustigue des haut-
parleurs aux le-vres du jet. Dans le cas prdsent ce chemin
est tr~s court et le temps de transmission de la fluctuation
de pression quasi ndgligeable. Cela constitue une nouveautd
par rapport aux experiences prdecddentes, effectudes par
Patrick Reisenthel, dans lesquelles un haut-parleur unique
se trouvait A environ 3 m des levres du jet.

- La troisibme branche est le phdnom~ne de rdceptivitd
qui effectue le couplage entre les fluctuations de pression
et les fluctuations de vitesse dans le ddveloppement initial
de la couche limitp.

- Enfin, ces fluctuations de vitesse sont amplifides de
maniere sdlective lors de leur convection dans l'dcoulement.

Il est possible de calculer le gain de la boucle de
retour, mais cette donnee est d'un intdrdt limitd dans
1'etude prdsentde ici puisque le gain est maintenu constant
au cours des expdriences.

L'intdrdt du procdd d'excitation du jet en boucle
fermde est qu'il per-met d'augmenter l'organisation de la
couche limite du jet (apparition d'oscillations
harmoniques), renforcant le phenome-ne naturel d'auto-
excitation du jet.
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11.2 Positionixement de la sonde do feedback

Le but de l'dtude dtant de vdrifier si le jet excite
obdit A des dquations dynamiques simplifiees, il est par
consdquent souhaitable d'obtenir de "bonnes" conditions
expdrimentales, clest-a-dire le developpement d'oscillatiois
periodiques.

L'expdrience a montrd qu'il faut placer la sonde de
S feedback dans la partie la couche limite ou la vitessa est

dlevde (U/TJ.=0,8) et A quelgues longueurs d'onde des levres
du jet pou 2 obtenir de telles conditions. Pour mdmoire, La
figure 3 rdsuine 1'6volution de la densite spectrale en
fonction de la position de la sonde de feedback (cette serie
de spectres provient. de la thease de Reisenthel). Pour

0 0,18<X/D<0,28, il y a une claire dominanc6 d'un mode et de
ses harmoniques. C'est naturellement cett- configuration gui
est intdressante dans le cas present.

C'est avec le plus grand soin que la sonde de feedback a
dt positionnde avant le comnienc~ment des experiences. L'un
des crit~res de cette opdration dtait l'obtention

*d'oscillations "pures". La puretd des oscillations
provoqudes par la boucle fermde est illustree par la figure
4 qui reprdsente la densitd spectrale de la vitesse pour Re
= 75000 et x = 5 mm. Il y a une claire dominance d'un mode
(autour de 2900Hz) et de son sous-harmonique.

Il convient de rappeler que toutes les inesures de
* vitesse sont, effectudes par une sonde mobile de mesure,

distincte de la sonde de feedback gui, elle, demeure fixe
pendant toute la durde de l'expdrience.

r
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11.3 Principaux resultats

a) Existence d'un gain, d'une position et d'un nombre de
Reynolds critiques

Pour une position correcte de la sonde de feedback, la
creation d'une boucle fermee provoque l'instauration
d'oscillations auto-entretenues harmoniques. L'excitation du
jet depend fortement de la valeur du gain total de la boucle
de retour (l'amplification du signal de vitesse est a gain
variable). Pour un gain faible, la boucle de retour est sans
effet sur la couche limite du jet. Seules des valeurs du
gain superieures a un seuil excitent l'ecoulemnent. La figure
5 illustre la variation de l'amplitude avec le gain. Dans sa
these de phD, Reisenthel propose comme valeur du gain
critique l'expression suivante:

_ _ .rX
R (1)

Oil:
- R est la fonction d3 transfert de la receptivite

SR (2)

R peut 6tre suppose constant dans le cas etudie.
- X est la position de la sonde de feedback.
- 0z est le taux d'amplification spatial de la

perturbation suppose egal au tan×x d'amplification maximal
et donc proportionnel a la racine du nombre de Reynolds.

En supposant maintenant le gain et le nombre de Reynolds
fixes, la condition d'apparition de l'excitation

F > (3)

devient

X > Xc , Xc 
=  (4)

0

Ce qui montre l'existence d'un seuil pour la position de
la sonde de feedback.

De m4me, en supposant la position et le gain fixes, un
nombre de Reynolds critique est mis en evidence:

Rec = I (5)
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b) Existence d'une frequence propre

Les rdsultats ci-dessus rdsument les conditions
* d'apparition d'oscillations auto-entretenues dans la couche

limite du jet. Ces oscillations sont caractdrisdes par:
- un niveau de fluctuation dlevd. Sur la figure 4, le

pic de la frdquence fondamentale est & environ 40 dB par
rapport au bruit de fond.

- un important degrd de d~terminisme dans la sdlecticn
* d'une frdquence unique (accompagnde de ses harmoniques).

Cette frdquence intrinsO-que sdlectionn~e par la boucle
fermde est appelee frequence propre.Dans les conditions de
la figure 5, Re = 75000 et x = 5 mm, la fr~quence propre est
2880 Hz.

Le processus de selection d'une frdqudence particuliere
* par la buucle fermee n'a pas ete complhtement dlucidd

jusqu'a present. Cependant de simples considerations sur la
phase permettent de conclure A l'existence d'une sdrie
discrO-te de frdquences admissibles. Comine l'a montrd
Reisenthel, la condition d'apparition d'oscillations (somnIc
des ddlais de phase de la boucle fermde multiple de 27,

* est:

2flfd/C 0 + 2TTfX/C + 2'nft +Y- = 2rrn (6)

- d est la distance des haut-parleurs aux l4 vres du jet
* (quasi ndgligeable dans le cas etudie).

- C0 est la vitesse du son.
- C est la vitesse de phase de l'dcoulement (C = Uj/2).
-I est le retard dlectronique (negligeable).
-'- est le retard de phase de la rdceptivitd.
En inversant la relation ci-dessus, ii vient:

n n
fl 2.T (7)

C.

La figure 6 compare les rdsultats thdoriques de
l'dquation ci-dessus ( %f et xssont pris dgaux & 0 ) avec
les frequences mesurees pour un gain fixe et un nombre de
Reynolds compris entre 45000 et 85000. Il apparait
clairement que les frequences fn rep rdsentent un ensemble de
frdquences permissibles pour 1 xitto en boucle fermee;
mais ne permettent pas d'expliquer le processus de selection
d'une unique frdquence propre.

* .7



284

c) Hystdrdsis et structure en bandes

Au cours de l'excitation du jet en boucle fermde et sous
certairies conditions (valeur du gain ou du nombre de
Reynolds assez importantes) , ii se ddveloppe dans la couche
limite du jet des oscillations de vitesse caracterisees par
une unique frdquence. En maintenant le gain et la position
de la sonde de feedback constants et en faisant varier le
nombre de Reynolds, ii est possible de determiner les
variat.Lons de la frequence propre de l'oscillation en
fonction du nombre de Reynolds. La figure 6 en illustre les
principales caracteristiques:

- Les points de mesure slaccuinulent suivant des segments
de droite tres clairement definis. Sur l'un de ces segments
de droite, la frequence propre vanie 'faiblement mais
lindairement en fonction du nombre de Reynolds. Les0
variations de la frequence propre en fonction du nombre de
Reynolds ont donc une structure en bandes.

- Le saut de frdquence d'une bande A une aut"-e
slaccompagne parfois d'hysterdsis comme il est possible de
1'observer autour de Re = 60000.

L'&quation (7) permet d'dlucider la structure en bande
d~crite ci-dessus, le passage d'une bande A une autre
correspondant a un changement de valeur propre.

Les expdriences presentees ici n~cessitent l'absence de
sauts en frequence intempestifs pour une large plage de
nombre de Reynolds. Par consdquent, La sonde de feedback et
le gain de la boucle de retour ont ete choisis suivant deux
crit~res:

- L'obtention d'oscillations pures.
- L'assurance d'appartenir a une bande assez large.
Le respect de ces critbres a permis, au cours des

expdriences, de faire varier le nombre de Reynolds de 60000
A 78000 sans saut de frdquence.

d)Amplitude de saturation

Les considdrations sun la phase ont permis d'expliquer
l'emergence d'une frequence intrinsbque au cours de
l'excitation du jet en boucle fermee. Pour dlucider le
mecanisme de s~lection de l'amplitude de saturation de
l'oscillation, la boucle fermee est ddcomposde en deux
6l6ments:

- Une boucle ouverte dont ii est possible de d~terminer
la fonction de transfent (non lindaire) expdrimentalement en
forgant & diverses frdquences (u'lx/Uj en fonction de

P10/1 U 0

9S
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-Une boucle de retour, constitude du simple dtage
d'amplification du signal de vitesse issu de 1'andmome-tre.

* La condition de feedback s'ecrit simplement:

I

Flur L (8)

* La condition de feedback est representee sur la figure 7
pour differentes valeurs du gain ainsi que la reponse de la
boucle ouverte correspondant & la frdquence propre
sdlectionnde par la boucle fermee a X/D=O, 16 et Re=61600.
Pour un gain donnd I", la boucle fermde impose au point
(p, W U.,u'./U.) d'appartenir A la courbe.Cr, et At la courbe

* de afaction d~e transf ert. de la boucle ouverte. Un point
de fonctionnement est ainsi d~termind et donc l'amplitude de
saturation de l'oscillation.
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III INSTABILITES TEMPORELLES

111.1 Rdgime transitoire

Des mesures transitoires sont possible grace ala
fermeture d'un interrupteur dletronique fermant la boucle de
retour a des instants choisis pendant l'acquisition de
donnees (of figure 2). Cette opdration s'appuie sur un
interrupteur CD4066 cont6lld par l'ordinateur d'acquisition.
Ces mesures de rdgime transitoire permettent d'obtenir des
renseignements sur le caractO-re temporel des oscillations
qui se d~veloppent dans le jet excite en boucle fermde. Les
caractdristiques spatiales de cette instabilite temporelle
sont d~termineds grfice a 1'usage de deux sondes; une
premiOere sonde de feedback fixe et une deuxie-me sonde de
mesure mobile. La figure 8 prdsente un exemple de donndes0
brutes acquises par le MASSCOMP, l'acquisition de deux
regimes transitoires successits et du debut d'un troisi~me
sly trouve illustree. Les donndes sont ensuite traitdes dans
le but de determiner le taux de croissance temporel de
l'oscillation ( 0' en s-1). Les manipulations necessaires
seront decrites ultdrieurement dans le chapitre V.0

111.2 Caracteristiques du r6gime transitoire

Pour un nombre de Reynolds et une position de la sonde
de feedback fixes, si a t = 0 la boucle de retour (gain r' )
est brutalement fermde et si r > r'c, l'amplitude de la
frdguence propre sdlectionnde augmente de sa valeur
naturelle de bruit de fond a sa valeur de saturation.
Connaissant le comportement en boucle ouverte du systieme,
l'dvolution temporelle de la fluctuation de vitesse peut
fitre d~crite de la mani~re suivante. A t < 0, la fluctuation
de vitesse (u = u.*/U.) est faible. Le niveau de pression (p
=P, /.LpLJ) est incon~u, ddpendant certainement du niveau de
f eed a-Ck liaturei. A t = 0, u a une valeur initial uO et
1l'interrupteur est f ermd. Par la boucle de retour, cette
fluctuation de vitesse initiale entraine une fluctuation de
pression p,. Celle-ci fait ensuite naitre une perturbation
dans la vitesse aux le-vres du jet par le phdnomO-ne de
rdceptivite. Cette fluctuation initiale (d'un point de vue
spatial) de la vitesse est amplifide dans le sens de
l'6coulement provoquant au niveau de la sonde de feedback
une nou~velle fluctuation de vitesse ul. Le procedd se
reproduit jusqu'& convergence; le point de convergence dtant
le point opdrationnel ddfini ci-dessus (intersection de la
fonction de transfert de la boucle ouverte et de la courbe
de feedback). La f igure 9 illustre la description
prdcddente.

100
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Il a dte de plus ddmontrd par Reisenthel que, 'dans le
cas ofr/r est proche de 1 , la croissance de la

* perturbation de vitesse est exponentielle dans les premiers
instants (ie avant saturation). Le taux d'amplification
temporel est donnd par la formule suivante:

avec + + 'C la somme des retards
de la boucle. C

Enf in, ii a ete prouvd expdrimentalement que pourx<1
* la valeur de 6C est inddpendante de la distance aux levres du

jet.

0
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IV MOTIVATIONS

IV.1 Bifurcation de Hopf

L'existence d'une bifurcation de Hopf en nombre de
Reynolds dans l'excitation en boucle fermde du jet semble
probable. Les deux propridtds caracteristiques d'une
bifurcation de Hopf sont prdsentdes ci-dessous:0

- L'amplitude de saturation de la perturbation au
voisinage du point critique doit 6tre proportionnelle A la
racine carrde de la "distance" au point. Dans le cas dtudid,
pour Re > Recri, l'amplitude de saturation de la f l uctuation
de vitesse dolt fitre proportionnelle a (Re-Re cr)'

- Appelons Ur et u. les parties reelles et imaginaires
de la fluctuation de vitesse. Si autour du point critique

0
(u) = (A)(u) (10) + U i

alors ii faut que les valeurs propres de A(Re) soient
complexes conjuguees, qu'elles appartiennent au, demi-plan
complexe gauche pour Re < Recf, qu'elles croisent l'axe
imaginaire A Recr & une vitesse dkr/dRe) positive et finie.

U Linearized system around ReF
U + U.. 1.U
U= [ut, ui i t  [(0] ( A] [U]

__ _ _ _ __ _ _ _ _eiev1.j7 .. +- i

dk/dr->O0 and finite.
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IV.2 Recherche d'equations de comportement simplifiees

* Landau a proposd une dquation de modele simple pour
ddcrire l'6tat d'un systO-me subissant une bifurcation de
Hopf. Il est donc naturel de chercher & deter-miner si
1'dquation de Landau peut ddcrire l'6volution temporelle du
syst~me 6tudid.

L'dquation de Landau s'ecrit:

du/dt = au -CIu2 (u (11)

oii a et c sont deux coefficients complexes.
En cherchant des solutions de la forme u =A exp(i4),

l'6quation ci-dessus se d~compose en:

dA/dt = arA_- C 3A (12)
d~/dt = a1 -i(3

IV.3 Validation expdrimentale

a)Ddtermination des coefficients de l'6quation de Landau

Il a ete ddcrit dans le chapitre sur les instabilitO-s
temporelles comment, graice a un interrupteur dlectronique,
il est possible d'enregistrer des rdgimes transitoires. Dans
les premiers instants apr~s la fermeture de l'interrupteur
la croissance de l'amplitude de la fluctuation de vitesse
peut fitre considdrde comme exponentielle. Commie il sera
ddtailld par la suite, ii est possible d'effectuer des
mesures du taux de croissance dr sur des donndes
experimentales. Considdrons l'6quation 11, au d~but de1
croissance des oscillations il est possible de ndgliger A
devant A (car A est faible).L'dquation (12) devient alors
une simple dquation du premier degre:

dA/dt = arA (14)

* Ce qui montre clairement que le taux de croissance
exponentielle r et ar sont identiques.

En supposant 9=r 2 ,ft +(Oo, l'6quation (13) devient:

277f =a 1 - ciA2  (15)

* Le coefficient a* apparait comine proportionnel & la
frdquence initiale. Le coefficient c1  determine les
variations de la frequenee au cours du temnps. Connaissant
Il'volution temporelle de la frdquence ii est possible d'en
deduire les coefficients a. et ci. Une mdthode de
d~termination du coefficient de Landau c r sera proposde

* ultdrieurement.
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Une premibre serie d'expdriences a permis de montrer

qu:- a = 6 -,; 3Ca.)X= 0 pour X < 3 (cf thOese de phD de
Reisent~el)

- ci= 0 et ai 2T~f; O)ai/iX = 0 (rdsultats presentes
par Reisenthel a une confdrence). La figure originelle a
l1appui de ces rdsultats n'est pas en ma possesion.
Toutefois ceux-ci ayant dt confirmds par la suite, la
figure 10 qui represente les variations de ci (normalisd par
A Inax/Fmax) en fonction de x A Re =68000 ddrnontre
clairement que c. 0.

L'dquation d& Landau semble donc dtre un bon candidat
pour la description des oscillations temporelles qui se
d~veloppent dans le jet en boucle fermde pour l'unique
position X etudiee (X/D = 0,17).

b)Confirmation de l'existence d'une bifurcation de Hopf

Le premidr crit~re & vdrifier af in de confirmer
l'existence d'une bifurcation de Hopf est que, pour Re >
Recr et Re proche .de Recr, l1amplitude de saturation de la
flucty Y ion de vitesse soit bien proportionnelle & (Re-
Regr) N dtant pas en possession des premiOeres mesures
ef ectudes dans ce but, je suis dans 1'obligation de
prdsenter ici des rdsultats postdrieurs a ceux obtenus par
Reisenthel sur ce sujet.

La figure 11 prdsente les variations de l1amplitude de
saturation de 1'oscillation de vitesse en fonction du nombre
de Re. Le nombre de Reynolds critique est Re=65500. La
position de la sonde de mesure est x=5mm. Un programmne
informatique se charge d'effectuer une 'lrdgression
parabolique"l sur les donnees. Le nombre de points sur
lesquels la regression est calculde constitue l'un des
param~tres de ce programme. Dans l1exemple proposd, seuls
les trois premiers nombres de Reynolds apras le seuil0
semblent appartenir & la branche parabolique et sont pris en
compte par la regression. Le coefficient de proportionnalitd
entre l'amplitude de saturation et la racine carree de la
"distance" au seui ((Re-Recr)/Recr) est d~termind par le
programme d'ajustement et vaut 01.= 0,57 rn/s.

Dans la f igure 12, l'aJustein t est effectud sur t'
termes 1? ~Ce-ReCE)/Recr1 i, (Re-Re. )/er 1I
L.(Re-Recr)/Recr] )2e~ sur tous les points ahisponibles.
Pour Re proche de Recr, le premier terme de l'ajustement est
prdponddrant et donc son coefficient peut 6tre considdrd
comme le coefficient de propotionnalitd recherchd ~ 0,50
m/s dans l1exemple propose).

Quelque soit la methode employee pour effectuer la
regression parabolique, l1excitation du jet en boucle fermde
possede la premiere caracteristique des bifurc Lions de
Hopt.

Pour vdrifier le deuxi~me crit~re, ii faut au prdalable
d~terminer une matrice A telle que0

(U) - (A) (U)
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En dcrivant u = exp(art) exp(i4) (valable au voisinage
de la fermeture de l'interrupteur) et comnme d( /dt = ai, on
a:

= ff
La matrice carrde ci-dessus se confond avec la matrice A

* recherchde pour les instant., initiaux.
Les valeurs propres de A(Re) sont alors:

A 1 =ar - a

* La figrure 13 pr~sente 1'6volution de valeurs propres
paramdtrde par le nombre de Reynolds. L'examen de cette
figure prouve que le jet excitd en boucle fermde verifie la
deuxihme caractdristique des bifurcations de Hopf. Ce qui
ach~ve de confirmer experimentalement l'existence d'une
bifurcation de Hopf autour du nombre de Reynolds critique.

IVA4 Motivations de la prisente 6tude

Il a ete Otabli qu'il se produit dans le jet excitd en
* boucle ferinde une bifurcation de Hopf autour du nombre de

Reynolds critique. Pour une position de l'espace (X/D =
0,17), l'6quation de Landau semble correctement ddcrire
1'6volution temporelle de la vitesse. La recherche
d'dquations approprides d'dvolution d'amplitude est motivde
par leur simplicitd par rapport aux dquations de Navier-

* Stokes.
Il est toutefois peu probable gu'une dynamique aussi

sixupliste qu'est 1'6quation de Landau (temporelle) puisse
gouverner le ddveloppement des oscillations de vitesse dans
la couche limite du jet. Le but de cette dtude est de
recommencer la determination expdrimentale des coefficients

* de 1'4quation de Landau pour plusieurs positions de
1'espace. Les coefficients ar, ai et ci dtant inddpendant de
1'espace, une attention particuli~re sera accordde au
coefficient de Landau cr. La principale motivation de cette
6tude est par consdquent de mesurer 1,evolution de Cr en
fonction de x.
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V PROCEDES EXPERIMENTAUX ET TRAITEMENT DES DONNEES

V.1. Proc~dds experimentaux

Les donnO-es sont filtrdes analogiquenment & 10000 Hz et
dchantillonndes & 20000Hz dans Il'ventualitd d'une analyse
spectrale par transformde de Fourier. Une diffucultd majeure
de l'expdrience prdsentde ici a ete la rdpdtabilitd au jour
le jour de conditions expdrimentales identiques. En effet,
malgrd une sonde de feedback fixe, des diffdrences en
frdquence et en amplitude de l'excitation ont pu 6tre
observdes dans des conditions apparenunent identiques de gain
et de nombre de Reynolds. Pour pallier cette difficultd une
table de r~fdrence a ete dtablie avant toute mesure
associant, a chaque nombre de Reynolds, la frdquence et
l'amplitude caractdristiques de l'oscillation. Tous les
rdglaqes prdcddant les mesures ont dt dtablis & l'aide de
cette table, la fr~quence de rdfdrence permettant de
s~lectionner le nombre de Reynolds et l'amplitude de
rdfdrence de retrouver le gain. L'acquisition de donndes
slest divisde en deux parties:

a)L'acquisition de rdgimes transitoires

Le but des mesures est d'dtudier les caractdristiques
spatiales de l'instabilitd temporelle qui se ddveloppe dans
le jet a la fermeture de la boucle fermde. Conune ddcrit
auparavant, deux sondes sont utilis~es, une sonde de
feedback fixe et une sonde de mesure mobile.La sonde de
feedback est placee A X-6,21mm et U/U.=0,85. Pour chaque
nombre de Reynolds compris entre 66000 e . 77000, la sonde de
mesure s'est deplacee de x=5iun a x=l7mm. A chaque position
400 rdgimes transitoires du type de ceux reprdsentds figure
8 ont dtd acquis. Chaque mesure est constitude de 2500
points acquis At 20000 Hz. L'internripteur est synchronisd
avec l'acquisition, ii se ferme environ au 4000-me
dchantillon et se rouvre apres la mesure du dernier point.
Etant donne l'importance de la place mdmoire requise pour
stocker les donnees acquises, apres chaque position un
transfert de donnees de l'ordinateur d'acquisition a
l'ordinateur de traitement s'est avere necessaire. Puis,
apres chaque nombre de Reynolds,* les mesures ont ete
sauvegardees sur bandes magndtiques et effacdes de
l'ordinateur de traitement pour ne pas saturer l'ordinateur.
Toute l'acquisition de donnees s'est produite & la chaine
afin de rationaliser l'occupation du laboratoire. Le
traitement n'a debutd qu'apres la fin de la phase
d' acquisition.
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b)L'acquisition de rdgimes permanents

Les mesures ont ete prises & l1aide d'un analyseur de
spectre pour un nombre de Reynolds compris entre 61000 et
77000 et pour des positions de la sonde de mesure x
comprises entre 5mm et 24mm. le jet est excitd de manidre
permanente par la boucle de retour (ii "sonne"
inddfiniment). Les mesures relevdes & la main sur

* l'analyseur de spectre sont:
A,,, l1amplitude de saturation

Y ~, la phase entre les deux sondes (celle de feedback
et celle de mesure)

- C., la cohdrence entre les deux signaux

* Le principal probl&me pose par ces mes;ures a dtd leur
extrdme gourmandise en temnps d'utilisation des haut-parleurs
dont 1'electronique donnait parfois des signes
d'essoufflement. Quand la, tempdrature du laboratoire
s'dlevait (jusqu'& 2 8'0C) , les haut-parleurs semblaient
parfois faiblir, impression auditive que confirmnait la

* r~duction du pic observd & l'analyseur de spectre. 12. a donc
ete n~cessaire d'optimiser l'utilisation des haut-parleurs
et parfois de laisser les circuits dlectroniques se
refroidir

*V.2 Traitement des dounies

a) Ddmodulation d'amplitude

Le principal outil employd pour le traiteinent des
donndes est, la transformation de Hilbert. Au cours d'une

* premidre dtape, les donndes brutes sont filtrdes autour de
la frdquence propre des oscillations. Elles passent dans un
filtre passe bas puis un filtre passe bande af in de se
debarasser des fluctuations inddsirables. Tous les, filtres
de frdquence employds sont des filtres FIR & 65 points.
Trois filtres passe bande diffdrents sont utilisds a cause

* de l'6ventail, des frdquences concernees (de 2500 Hz & 3000
Hz pour 65000 < Re < 77000). les trois filtres passe bande
sont montrds figure 14 et le filtre passe bas figure 15. Les
sdries temporelles filtrees en frdquence sont ensuite
convoludes avec le filtre de Hilbert digital & 63 points (cf
figure 15). L'amplitude et la phase rdsulte du calcul

* analytique decrit ci-dessous.

0(
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ASi r(t) est la sdrie temporelle filtrde et r (t) est la
transformde de Hilbert de r(t), posons:

z(t) = r(t) -ir (t)0

Si z(t) est mis sous forme polaire:

z(t) = A (t) e 1T(t)

alors A(t) est l'enveloppe instantannde de r(t) et 4%t) 0
est la phase instantannde. Les diffdrentes etapes de cette
procddure se trouvent rdsumees dans les deux premiers
schdmas de la figure 16.Signalons de-s maintenant que les
deux schdmas du milieu de la figure 16 ne sont pas
"authentiques" puisqu'ils proviennent de idsures antdrieures
faites par Reisenthel. ce fait est sans importance puisque
leur but est d'illustrer la mani~re dont le traitement des
donndes slest deroule.

Enf in les 400 fonctions A(t) sont moyenndes en phase
donnant une courbe d'axnplitude d~modulde moyenne du type de
celle reprdsentde au bas de la figure 16.

b) Determination du taux de croissance

Si A(t) = exp(Gt) alors CT, = d(log(A))/dt. Le troisi6me
schdma de la figure 16 montre le logarithme de A en fonction
du temps. Comme les donnees sont plutbt bruitees pendant
tout le rdgime transitoire, la pente est deterzninde par une
mdthode des moindres carres. Etant donnd l'importance des
donndes & traiter ( 12 x 13 x 400 rdgimes transitoires ont
ete enregistrds), une mdthode de traitement semi-automatique
a dQ f4tre utilisee.

Pour chaque nombre de Reynolds et chague position, un
programme fait ddfiler devant un opdrateur les 5 premiers
rdgimes transitoires. A chaque dchantillon, l'opdrateur
choisit les limites de l'ajustement, le calcul de la pente
s'effectuant entre ces lixnites. Puis 1'ordinateur moyenne
les 5 couples de limites proposes et, avec l1accord de
1'operateur, traite les autres 0-chantillons (395) avec les
limites moyennes d~crites ci-dessus. En cas d'incertitude,
l'operateur peut prolonger l'investigation aussi longtemps
qu'il le souhaite.

Les criteres en vigueur pour determiner la longueur de
l'ajustement sont les suivants. Le premier crit~re consiste
A maximiser la longueur de la rdgression afin de diminuer
1'erreur. La limite supdrieure de l'ajustenient est choisi
af in de d'arrdter l'ajustement avant la zone de saturation
afin d'avoir un taux de croissance strictement exponentiel.
Toutefois l'obligation de calculer la regression entre des
limites fixes n'a pas permis l1assurance du respect de ces
criteres pour chaque mesure. En effet, les rdalisations
d'une me-me sdrie peuvent presenter d'importantes
diffdrences. Le debut de la croissance exponentielle ou sa
duree peuvent grandement varier d'une mesure a l1autre. Pour
5mm < x < 11mm, le traitement automatique des donnees
s'exdcutait correctement. Pour 12mm < x < 17mm, la qualitd
des donndes se degradait, le traiterent automatique est
apparu comme peu fiable.
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Le taux de croissance est obtenu en moyennant les 400
taux de croissance des differentes realisations. Comm'e

0parallO-lement, l'amplitude calculee est moyennde, une
deuxiO-me mdthode d'obtention du taux de croissance
exponentielle a dt possible. Elle a consiste & faire une
rdgression sur la moyenne en phase des amplitudes.

Les deux mdthodes de calcul du taux de croissance ont
fourni des rdsultats similaires bien que diffdrents en
valeur, la deuxi~me mdthode donnant des rdsultats
sensiblement superieurs & ceux de la premie-re. Finalement
en ddpit de leur incetitude elevee, seuls les rdsultats de
la premiere mdthode ont dte- utilises car ils sont apparus
comme plus "'lisses".

c) Param~tres

A l'issue du traitement des donnees, pour 66000<Re<77000
et 5mm<x<l7mm, les parametres suivants ont ete calcules:

T' (ou ar): taux de croissance exponentiel
F1 : frequence initial

%:~ partie imaginaire du coefficient de Landau
-ag :amp litude ddmodulde asymptotique
cour es d'amplitude moyennde en phase

Une analyse de Fourier sur les donnees acquises a
d'autre part per-mis de calculer la frdquence maximum Fmax et
l'amplitude associee a cette frdquence Amax27 Tous ces

* rdsultats ainsi que les resultats de 1 acqtuisition des
regimes permanents ont ete regroupes dans deux bases de
donnees.



296

VI RESULTATS ET CO2O4ENTAIRES

VI.1 Linearite entre la frdquence propre et le nombre de
Reynolds

Dans le paragraphe II.3.c est expliqud la structure en
bandes de la variation de la frdquence en fonction du norabre
de Reynolds. De bonnes conditions expdrimentales ont dt
choisies, entre autres l'appartenance a une large bande. Par
consdquent, ii doit 6tre possible de verifier la lindaritd
entre la frdquence propre et le nombre de Reynolds.

F designe la frequence mesurde A l'analyseur de spectre.
Fmax designe la frequence calculde par analyse de Fourier
sur les donndes acquises. La figure 17 prdsente les
variations de F en fonction du nombre de Reynolds et celleS
de Fmax en fonction de F. Comme il apparait clairement dans
le premier graphique, la relation entre Re et F est
parfaitement lineaire. Ce rdsultat est naturel puisque la
frequence mesuree a l'analyseur de spectre tient lieu de
reference pour le nombre de Reynolds. La frdquence des
donnees acquises (F ax) prdsente une certaine dispersion en0
fonction de F donc Mu nombre de Reynolds. Pour chaque F (ie
nombre de Reynolds) la frequence de chacune des 13 positions
est reprdsentee. La dispersion de Fmax est donc. normale
puisque, l'acquisition d'une sdrie de mesure durant environ
deux heures, il se produit indvitablement de ldgeres
variations en nombre de R~eynolds pendant cette duree. Le
contenu frequentiel des donnees acquises est donc conforme
aux previsions.

VI.2 Evolution d'un mode dans le temps et l'espace

a) Evolution temporelle de l'amplitude de la frequence
propre.

Comme explipuw dans le paragraphe V.II.a, la moyenne en
phase des courbes d'amplitude obtenues apres transformde de
Hilbert permet d'apprdcier l'dvolution temporelle de
l'amplitude de la frO-quence propre. La figure 18 presente
deux dchantillons de ces courbes pour Re=73000, x=9mm, et
x=l5mm. L'llment le plus frappant de ces deux courbes est
l1existence d'un pic en amplitude de taille importante au
moment de la fermeture de 1'interrutnteur. L'examen minutieux
des donnees brutes (cf figure 8) reve-le dgalement
l'existence d'une impulsion de vitesse & la fermeture de
1'interrupteur. Aucune trace d'impulsion de vitesse ne peut
dtre decelee dans les travaux anterieurs de Reisenthel.
L'utilisation d'une couronne de haut-parleurs et d'un
nouveau circuit dlectronique en amont de ces haut-parleurs
sont les seules differences entre l'installation
expdrimentale utilisee ici et celle de Reisenthel. Pour une
raison & present inconnue, la fermeture de 1'interrupteur
sur la boucle fermee semble generer artificiellement une
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impulsion dlectrique dans le circuit dlectronique des haut-
parleurs qui produit ensuite une impulsion de vitesse dans

* la couche limite du jet. Du fait de l'inevitable feedback,
cette impulsion est susceptible de provoquer un echo. 11 est
possible de d'observer cet dcho dans le premier schdIna de la
figure 18 sous forme d'un deuxiO-me pic en amplitude. Ces
fluctuations de vitesse parasites compromettent le caratere
exponentiel, de la croissance des oscillations A la fermeture
de l'interrupteur, rendant plus delicat encore la
determination du taux de croissance exponentielle. Pour
x=l1ium (deuxi !me schema) le pic en amplitude est moins net A
cause du fort niveau d'oscillations naturelles (mode
axisymdtrique) avant fermeture de l'interrupteur, mas ii
rend dgalement difficile l'observation de la croissance des

40 oscillations.

b) Diagramne spatio-temporel

A chague nombre de Reynolds 1l'-volution temporelle de
l'amplitude associee A la frdquence propre est connue pour
tout x compris entre 5mm et 17mm. La volontd de comparer ces

* fonctions pour diffdrents points de l'espace a conduit a une
reprdsentation en trois dimensions comme celle de la figure
19. Ce diagramme et les suivants ont dtd obtenus & l'aide
d'un logiciel graphique (SURFER) sur PC. Comme la legende
des axes l'indique, ii. s'agit d'une simple reprdsentation en
trois dimensions sans les parties caches de l1amplitude de

* la frequence propre en fonction du temps t et de la position
x. Les donndes sont brutes et n'ont subit aucune
manipulation ou lissage (sauf une decimation des points). La
resolution en temps etant bien meilleure que celle suivant
x, ii n'est pas dtonnant d'avoir une grille plus dense dans
une direction que dans l1autre.

* La figure 19 livre d'inte'ressants resultats qualitatifs:
- L'existence de 1'impulsion de vitesse se retrouve

naturellement & toutes les positions sous forme d'un pic en
amplitude. Le pic semble toutefois se deplacer vers
1'arriere & mesure que x augmente. Ce recul est confirmd par
les diagrammes contours prdsentds de la figure 22 a la

* figure 24. L'allongement de la durde de convection pour une
augmentation de x en est l'explication.

- Pour des valeurs "importantes" de la vitesse (a partir
de x = 15mm), la couche limite du jet est naturellement
excitee. Bien que le filtrage soit effectud autour de la
frdquence propre, ii est suffisament grossier pour refleter

* l'6volution de l'amplitude du mode naturel du jet (le mode
axisymdtrique). La croissance de ce mode en fonction de x
apparalt nettement.

- L'dvolution spatiale de la frdquence propre est
analogue & celle du mode axisymdtrique. Comme le montre la
figure 21, le mode axisymetrique (fi Q) croit d'abord

* lineairement en fonction de x puis ddcrbit brutalement a
profit de son sous-harmonique avant de connaitre une seconde
croissance pour des x plus dlevds. L'existence d'une
"'vallde" autour de x = 13 mm, est caractdristique de la
decroissance brutale de l1amplitude de la frequence propre.
La figure 20 qui nWest qu'une simple rotation d'axes permet

* de mieux apprdcier la profondeur de la vallde.
ij
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- L'4volution du mode propre se produit plus "tbt" (d'un
point de vue spatial) que celle du mode axisyzndtrique. En se
reportant au diagranune contour prdsentd & la figure 22, il
est facile d'evaluer la position x a laquelle le maximum du
mode propre et celui du mode axisymdtrique se trouve. Le
premier est a x/D=O,15 et le second A x/D=0,3 confirmnant
l'afirmation ci-dessus. La similitude de comportement entre
le mode propre et le mode axisymdtrique vient renforcer
l'idee que l'excitation du jet en boucle fermde accentue
l'organisation sous-jacente de la couche limite.0

- En f iltrant autour du sous-harmonique du mode propre
et en retraitant les donndes par transformde de Hilbert, ii
est possible d'obtenir les variations spatio-temporelles de
l'amplitude du sous-har-monique. Les figures 25 et 26
prdsentent deux vues en trois dimensions de ces variations.
Comme le laissait prdvoir le comportement du sous-har-monique
du mode naturel (axisymdtrique), la croissance du sous-
harmonique du rode propre se produit aux alentours de la
decroissance brutale de ce mode propre & x/D = 0,26 comine il
est possible de le determiner sur le diagramne contour de la
figure 27. La similitude de comportement entre le mode
propre et le mode naturel se trouve encore renforcde.

- L'examen des diffdrents diagramr's contours (Re=76000,
Re=71000 et Re=68000) met en evidence des differences dans
l'allure des variations spat io-temporel11es de l'amplitude.
La torsion des lignes de niveau que l'on distingue nettement
pour Re=76000 semble changer de courbure & inesure que le
nombre de Reynolds decroit. Aucune explication satisfaisante
n'a permis d'expliquer cette tendance.

Le principal intdrdt des diagrammes spatio-temporels
commentO-s ci-dessus reside peut-dtre dans leur nouveaute.
Clest la premi~re fois que les dvolutions dans le temps et
dans une direction d'un mode de la couche-limite du jet sont
obtenues.

VI.3 Taux de croissance exponentielle

Tous les resultats obtenus jusqu'a prdsent tant sur
l'amplitude des oscillations que sur leur frdquence sont en
accord avec les travaux precedents effectues sur le Jet. Les
premiers points de disaccord sont apparus avec le taux de
croissance exponentielle. Comme expliqud dans le chapitre
V.2.b, chaque rdalisation est unique et le traitement semi-
automatique des donndes ne per-met pas de prendre en compte
la specificite de chaque realisation. La determination du
taux de croissance exponentielle est par nature m~me tres
imprecise surtout pour les valeurs importantes de x ( x>llnun
) pour .. esquelles le signal est tres bruitd. Toutefois, les
ddsaccords constates se repdtant & toute les positions ou
tous les nombres de Reynolds, ils ne peuvent donc fitre
imputds au mode de calcul du taux de croissance
exponentielle.
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Au cours des mesures effectuees par Reisenthel le taux
de croissance exponentielle etait apparu comme constant pour
x <~ 3A. La figure 28 preserite les variations du taux de

* croissance 6' en fonction de x pour Re = 71000. Sur ce schema
o ne semble -constant que pour les deux premieres positions
de la sonde de mesure soit pour x < 1, 5 ),. Ce rdsultat est
confirmd A tous les autres nombres de Reynolds. Pour
1'instant il est prdfdrable de se contenter de cette
observation.

* Bien plus surprenantes sont les variations de 6' en
fonction du nombre de Reynolds & x fixe. Le calcul et
l1expdrience ont prouvd, qu'autour du nombre de Reynolds
critique, le taux de croissance vanie lindairement en
f onction du nombre de Reynolds. La figure 29 prdsente les
rdsultats obtenus sur ce sujet par Reisenthel montre

*clairement l1existence d'une zone de croissance lindaire. Il
est impossible d'observer une telle zone dans la figure 30
qui reprdsente pour x = 5mm et pour x = 9mm les variations
de 6' eh fonction du nombre de Reynolds. Aucune explication
satisfaisante n'a permis d'dlucider cette anomalie. La seule
irrdgularitd constatde est l'excitation du jet par une

* impulsion dlectrique du circuit d'alimentation des haut-
parleurs A la fermeture de l'iriterrupteur. En forgant la
croissance des oscillations de mani~re constante, elle
pourrait expliquer l1absence de variations de T en fonction
du nombre de Reynolds. T' serait ndcessaire de recommencer
les experiences en amdliorant l'dlectronique des haut-

* parleurs pour dtudier plus en ddtail les variations du taux
de croissance exponentielle.

VIA4 Coefficient de Landau

* Rappelons que la motivation principale de la presente
dtude est l1examen des variations du coefficient de Landau
cr en fonction de x.

La ddtermination du coefficient de Landau s'effectue de
la mani~re suivante. L'dquation 12 stdcrit:

dA/dt = ar.A - crA3

En rdgime permanent (dA,/dt = 0), on obtient donc:

Cr = arA2

ar est egal au taux de variation exponentielle C. Par
* consequent, en. se fiant aux rdsultats de Reisenthel, la

relation suivante est vdrifide autour du nombre de Reynolds
critique:

ar &a.

*La relation entre A et Re est dgalement connue. Dans

l'hypothese d'une bifurcation de Hopf, il vient:

A* k
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Les manieres de calculer le coefficient ont ete
expliqudes dans le chapitre IV.3.b (par regression
parabolique & un ou plus ieurs termes). Deux series de
coefficients ont donc ete obtenues pour tout x.0

II vient enf in:

cr =ar/A3 c
Le calcul de tjslavere tres ddlicat puisque, comme

expliqud au paragraphe precedent, ii n'a pas dtd possible
sur les prdsentes mesures de constater une variation
lindaire entre le taux de croissance et le nombre de
Reynolds. La premi~re solutio fl consiste a supposer Y)
constant et & reprdsenter ln(l/$ ) en fonction de x. C'est
ce que propose la figure 31. Cela permet d'effectuer une
comparaison entre les rdsultats obtenus par les deux0
diffdrentes mdthodes de regression parabolique et de
constater que les rdsultats sont semblables et que leurs
variations sont quasi identiques. Dordnavant, seuls les
rdsultats de la regression a trois termes seront pris en
considdration.

Une mdthode d'dvaluation de v) a dt entreprise. Le
nomibre de Reynolds critique est 65500. En faisant la moyenne
des taux de croissance de Re=66000, 67000 et 68000, en
determinant la pente de la droite qui relie le point moyen
au point critique, une approximation de Iest obtenue (cf
figure 32). Il a dte ainsi possible de "'mesurer" 0) en
fonction de x ( local ) . Le calcul de cr peut alors se
faire soit avec le local soit si, en accord avec des
rdsultats obtenus par Reisenthel, on suppose v constant et
egal a V)(x=5mm) (rinitial). Les variations de ln(c%) en
fonction de x sont reprdsentdes figure 33. Quelque solt la
mdthode employee, Cr varie cons iddrabl ement en fonction de
X.
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CONCLUS ION

Cette dtude a permis de fortifier la conviction que
l'excitation du jet en boucle fermee permet de renforcer
l'organisation sous-jacente de la couche* limite. Grace a
l'utilisation d'un interrupteur synchronisd avec

* l'acquisition de donnees et d'une sonde mobile, la mesure de
l'6volution spatio-temporelle de l'amplitude du mode propre
a Pu fitre realisee. La zoddlisation de la dynamique des
oscillations de vitesse par l'dquation de Landau a dtd
tentee. La forte ddpendance du coefficient de Landau en x a
montrd que l1'quation purement temporelle de Landau ne
constituait pas une moddlisation suffisante.

Des ddsaccords ont dt constatds entre les prdsentes
mesures et des resultats expdrimentaux antdrieurs qui
semblent provenir de conditions experimentales ddfectueuses.
Pour supprimer le doute, ii serait souhaitable Vd'aliorer
l'6lectronique des haut-parleurs et de ... recomniencer. Avec
l'experience acquise et tous les programmes ndcessaires dej]a

* ~dcrits, cette opdration devrait se rdaliser facileinent.
Mes quatre mois & l'Illinois Institute of Technology

m'ont beaucoup apportd tant sur le plan linguistique que
scientifique. J'ai eu la chance et le bonheur de travailler
sous la conduite de Patrick Reisenthel dont les compdtences
et l'enthousiasme illuminajent chaque journde de travail. Je

* pense ainsi avoir agrdablement et efficacement compldtd la
formation reque dans l'option Air-Espace et & Centrale.
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0

ABSTRACT

The present experiment considers an axisymmetric jet

as a prototypical open flow system, the organization of

which has been enhanced by a strong feedback loop. When •

the source of feedback signal is located in the initial

shear layer, strong self-sustained oscillations were

spontaneously produced past critical conditions. Because

of the controlled conditions of the experiment,

thresholding effects based on velocity and streamwise

flow scale were related to the existence of a critical

gain. A dual empirical and analytical approach, motivated

by observations from this flowfield and based on the

concept of "hybrid" instability, was used to explain the

origin of frequency selectivity and the existence of a

critical Reynolds number in feedback systems.

One of the main results of this study is the

demonstration that, close to criticality, open flows with

feedback may support global instabilities which grow in

time. The temporal growth of the global feedback

instability and the spatial amplification in the shear

layer, qualify this instability as being "hybrid", in the

sense that it is temporal with respect to the amplitude

of global oscillations, but convective with respect to

the shear layer dynamics. The role of this "hybrid"

instability was analysed using phenomenological equations

utilizing the results of linear theory to describe in

xxiii
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detail the dynamics of feedback and many of its nonlinear

consequences. Finally, it was experimentally

demonstrated that, for Reynolds numbers slightly larger

than critical, well-defined limit-cycle behaviour is

observed. Analytical considerations suggest that an

increasing number of potentially excited modes may be

involved as the Reynolds number is further increased.

xxiv
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CHAPTER X

CONCLUSIONS

Summary

The role of feedback in a convectively unstable

axisymmetric jet has been experimentally investigated 0

using a controlled means of enhanced self-excitation. It

was found that under quite general conditions, the

upstream propagation of pressure fluctuations and their

coupling with the shear-layer instability spontaneously

produced strong self-sustained oscillations, past

critical conditions. This special open flow

configuration was investigated with an eye towards the

potential use of dynamical systems in turbulence.

These self-excited, highly organized instabilities

were found to share many of the qualitative features

exhibited by a broad class of hydroacoustic phenomena.

Because of the controlled conditions of the experiment,

thresholding effects based on velocity and streamwise

flow scale were related to the existence of a critical

gain. Furthermore, we have explained, using the concept

of "hybrid" instability, the origin of a critical

Reynolds number in feedback or resonant systems. Model

phenomenological equations utilizing linear stability

theory were used to describe in detail the dynamics of

feedback and many of its nonlinear consequences. This

dual empirical and analytical approach allowed us to
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explain the observed frequencies and their inter-relation

in more complete and rigorous ways than in previous

studies. The present data agree well with the predicted

scaling of the critical gain with downstream position of

the source of feedback and with Reynolds number.

Conditions of mild probe feedback have been used to

critically assess the potential importance of the

dynamical systems approach as a tool to analyse empirical

findings.

Specifically, the demonstration was made that

frequency stages are embedded within a band structure.

The width of these bands and their possible overlap was

determined to bear close ties with phenomena of

intermittent switching and hysteresis between competing

eigenfrequencies. Clear evidence was presented that

these effects should be viewed as being part of a unified

structure controlled by the gain of the feedback loop.

Most importantly, the exponential amplification or

decay of self-sustained oscillations close to criticality

was shown to be governed by a global temporal

instability. This instability exhibits a time scale

several orders of magnitude larger than the period of the

oscillation itself. The growth rates at the onset of

resonance were measured experimentally and found to be

independent of space. These global intrinsically driven

oscillations were found to be insensitive to external

disturbances for a substantial range of forcing levels
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and initial conditions, although all indications were

that the flow remained locally convectively unstable.

The role of the shear layer as a vehicle for the

amplification of disturbances within the feedback loop

was clearly established by connecting temporal growth

rates of the global instability with spatial

amplification in the shear layer. These two components

of the enhanced feedback effect, qualify the instability

as being "hybrid", in the sense that it is a temporal

instability with respect to the global amplitude of

oscillations, but a convective instability with respect

to the shear layer dynamics.

By considering issues of frequency competition based

on the temporal growth rates of the global oscillations,

an explanation was proposed for the frequency selection

process in a closed-loop configuration, and for the

observed frequency hysteresis.

Most significantly, it was shown experimentally

that, for Reynolds numbers slightly larger than critical,

well-defined limit-cycle behaviour is observed, with an

increasing number of potentially excited modes of

oscillation as the Reynolds number is increased. The

related existence of a critical streamwise flow scale for

the appearance of self-sustained oscillations in various

"tone" experiments was also established.

Greater insight into the role of receptivity in

feedback systems has been gained through the examination
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of related frequency selection criteria. It is believed

that the present measurements of receptivity constitute a

wealth of new results that pertain to the excitation of

free shear layers, under both steady-state and transient

conditions.

Comparison with theoretical estimates based on the

application of linear stability theory revealed that

while the location and magnitude of frequency jumps only

agreed in a qualitative sense, excellent agreement was

found in predicting the onset of oscillations.

Recommendations

Based on the results of this investigation, several

recommendations can be made. Because feedback systems

are ideally suited for dynamical systems analysis (Mees,

1986), and because the global feedback instability was

shown to develop temporally, it is felt that the present

flowfield might prove to be a viable candidate to

establish connections with deterministic chaos. In

particular, phase modulations of the eigenfrequency

should be analyzed in relation to the lowest eigenvalue

of the system, and its possible connection with the

jet-column mode. While the amplitude modulations

produced by open-loop forcing of the jet are supposedly

random (infinite-dimensional) by nature, it is expected

that the enhanced feedback constraint will restrict the
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dynamics of low-frequency modulations to a

finite-dimensional attractor.

It is worthwhile pointing out that the absence of a

critical Reynolds number and well-defined bifurcations in

(especially high Reynolds number) open flows has been one

of the major objections to the applicability of the

dynamical systems approach. The present study

demonstrates the existence of a critical Reynolds number

with respect to global oscillations, and a bifurcation to

well-defined limit-cycle behaviour, in a high Reynolds

number open flow with feedback. One might speculate that

subsequent bifurcations may be found, as the operating

point of the feedback loop is nested deeper inside the

unstable region of competing eigenfrequencies. From the

observations reported in the present manuscript, it

appears that moving the feedback probe downstream at

fixed gain and fixed Reynolds number might be a more

practical approach than an increase in Reynolds number,

in order to achieve this goal. In addition, it is

foreseen that the analysis of intrinsic aperiodic

oscillations and the route to gradual disorder as the

streamwise distance of the feedback probe is increased

will generate insight into the natural feedback

mechanism, with its inherent randomness and loss of phase

reference.

It is also suggested that a direct quantification of

natural feedback effects is possible by measuring in an
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anechoic chamber the decay of velocity fluctuations

during on/off transients. In the presence of a feedback

loop, perturbations from an organized state (e.g. limit

cycle) may yield meaningful flow information (for

instance via frequency locking), since even subtle

variations of the eigenfrequency convey phase speed

information.

Finally, the present findings allow us to speculate

that two feedback loops producing axisymmetric and

helical (m = ±1) disturbances could be utilized. Should

intermittent switching be observed between these modes

(possibly also including the jet-column mode), this would

give hope that a low-dimensional model might be

formulated for chaotic dynamics in jet flow.

The present findings clearly offer optimistic

prospects for the understanding and control of jet flows.

In the interpretation of measurements to come, the

understanding and functional dependence of the

receptivity mechanism will play a crucial role. It is

suggested that future theoretical work be directed toward

an extension of Bechert's (1982) analysis to finite

momentum thickness and moderate Strouhal numbers. Such

results would be of great value in the comprehension of

(even turbulent) open flows with pressure feedback.
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ABSTRACT

The nonlinear temporal stability of a viscous axisymmetric jet

using a hyperbolic tangent approximation to the actual mean flow is
studied with respect to axisymmetric and helical disturbances. For

the case of axisymmetric disturbances the weakly nonlinear Stuart-

Watson perturbation expansion is used to study the self interaction

0 of the fundamental in a neighborhood of the critical Reynolds num-

ber (R,). The Landau constant is positive indicating there is a su-

percritical Hopf bifurcation. In order to extend these results past

* R- R, a severely truncated Fourier modal expansion using the

Stuart-Watson functions to represent the r dependence, exponen-

tials in z and unknown amplitudes in time is substituted into the

Navier-Stokes equation. A projection onto an appropriate subspace

leads to a low dimensional (five) system of amplitude equations for

the disturbance of the fundamental, harmonic and distortion to the

mean flow.

The bifurcation package AUTO and Fourier spectrum are used

to characterize the nature of the solutions for various values of R.

Numerical results show that the periodic solution is stable for 55.3 <

R < 72.3. There is a secondary bifurcation at R = 72.3 to a

quasiperiodic solution with 2 incommensurate frequencies (Q2) fh

and f2. Each peak in the Fourier spectrum can be indexed accord-

ing to f = fi + nf 2 for n = 0,±1, ±2 .... As R increases past

R = 78 there is a transition through another periodic regime and

then finally a transition to intermittency for 100 < R < 1000. In the

x



350

case of helical disturbances the ten dimensional system of amplitude

equations has a stable periodic solution for 21.75 < R < 33.2. For

33.2 < R < 37. there is a Q2 solution. The Fourier spectrum con-

tains two families of peaks: q, = nfl - (n - 1)f2 for n = 0, 1, 2,...

and wn = nfl - (n + 1)f2 for n = 1,2,3,. ... As R increases f 2 /f 1

increases and the limiting frequency w, --+ 0 as f2/fl -- .5 indi-

cating a possible homoclinic orbit. No bounded solutions exist for

R> 37.

x

xi
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* CHAPTER VI

SUMMARY

* The nonlinear stability of a viscous axisymmetric jet having a hy-

perbolic tangent mean profile has been investigated. A severly trun-

cated form of a Fourier modal expansion has taken either the form

* of an axisymmetric or a nonaxisymmetric disturbance. The main

assumptions leading to the low order models of amplitude equations

are

0 1. parallel flow of mean velocity

2. decomposition of disturbance into separate modes in each of

the three spatial directions z, r, and 0

3. severe truncation of an infinite series

4. Stuart-Watson type shape functions in the radial direction.

In an effort to keep the dimension of the system of ODE's low,

we have limited the number of terms in the expansion of the pertur-

bation. Only those terms which would arise at first and second order

in a Stuart-Watson perturbation expansion have been retained.

In the case of axisymmetric disturbances we were able to ob-

tain the 3-D analogue of the Lorenz equations which includes only

the fundamental and mean flow distortion. Unlike the Lorenz sys-

tem which has chaotic solutions when the Prandtl number is high
0 enough, there are no'chaotic solutions for the model of the jet, since

there is only a globally stable periodic solution for R > R. We

have also shown that the absence of chaotic solutions is independent
of the choice of shape functions. Adding in the harmonic to give
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a 5-D system of ODE's causes the periodic solution to lose stabil-

ity to a quasiperiodic solution with 2 incommensurate frequencies.

For one choice of shape functions the quasiperiodic branch eventu-

ally goes through a periodic regime and then becomes intermittent.

However, a second choice of shape functions leads to a homoclinic

orbit and unbounded solutions following the Q2 regime. The case

of nonaxisymmetric disturbances, although more complicated, leads

to a similar sequence of bifurcations as the case of axisymmetric

disturbances using the second set of shape functions. However, the

common feature that distinguishes these low order models which rep-

resent an open flow system from the Lorenz system which represents

a closed flow system is that the secondary bifurcation leads to a Q2

regime, rather than to chaos. Of course the range of validity of these

expansions remains untested. Thus, the main conclusion is that a

very low order truncation does not lead to a model which has chaotic

solutions and the model is therefore inadequate to study transition

to turbulence. This work represents the first attempt to proceed be-

yond the linear stability analysis for the axisymmetric jet and the

first to include three dimensional disturbances to derive a low order

system of amplitude equations.

Possible extensions of this work would retain a higher number of

modes. For example, if a, and cj,k are constants, then the Fourier

modal procedure for the axisymmetric case leads to an N + 1 dimen-

sional system of ODE's which have the structure

An = anAn + C cj,kAjAk 0 < n < N (6.1)

j+k=n
Ij 1,1k 1_ N
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where An are the complex amplitudes of the disturbance and A3 -

A-,- when j > 0. Since an = (R - Rcn) for n 5 0 and a0 is a

negative constant, (6.1) has a periodic solution bifurcating from R,

which can be called SN to denote the order of truncation. It can be

shown that the nontrivial solutions of a lower order truncation, say

SN1 are not solutions of a higher order truncation, say SN2 where

N1 < NIV2 , although they may be close approximations to it. For

example comparisons of the models resulting from the truncations

N = 2 and N = 4 are shown in the diagram below.

This shows that we cannot retain S2 in going to the higher order

solution S4 since to do so would imply that A3 = A 4 = 0 and the

last equation for A 4 would not be satisfied since A 2 0 0.

.* ....................... *.**....... ...... ............. .

......... .... ............. ......... ..

*N= 2
A0 = aoAo+ cl,_ 1AA 1  -+ c2,_ 2 A2 A_ 2 : + C3 ,_ 3A 3A- 3 + c4,_ 4 A 4 A-4 i

Al = ajA+ cl,OA 1A O  + c2,- 1A2 A- 1 + c3,_ 2A 3 A- 2 + c4 ,- 3A 4A-3:

A2 = a2 A2 + cjjA 1Aj + c2 ,:A2 A0  + c3,- 1 A3 A- 1 + c4,- 2 A 4 A-2:

A 3 = a3A 3 + c1,2A 1A 2  + c2,1A2 A1  + c3,0A 3Ao + c4 , 1 A4 A-I

:A 4 = a4 A4 + c1 ,3 A1 A 3  + c2 ,2A 2A 2  + c3,1A3 A1  + c4 ,0A4 A0
............. .... o..........S... S...55.................

S

e0 eo o o e o••o o o e6~ e o O e e o eo e o o e e e o O O O W '
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Higher order truncations could verify whether the results ob-

tained in this work still persist or whether they are artifacts of the

truncation used and in theory it can be done. However, in view of

the large amount of work required to perform even a severe trun-

cation using only three terms it would not be practical to use the

Fourier Modal expansion to include higher order terms, especially in 0

the nonaxisymmetric case. A better approach would be to use an

entirely different method such as finite differences or finite elements.

Another possible extension would be to incorporate both a two

and three dimensional disturbance at leading order as proposed by

Craik (1971) for the case of a boundary layer. In this way we could

generate a more realistic pro2le of interactions. For example, the

diagram in the dotted boxes below shows the types of interactions

studied in this work when only one mode is present at leading order

(El). In the box on the left we consider the interaction of a z mode,

eia z at leading order. The interactions 1,3,4,6 are all between pure

z modes. Similarly in the box on the right, we consider interactions

produced by a z, 0 mode, ei(&z+9) at leading order. The interac-

tions 1', 3', 41 and 6' are also all between z, 0 modes. However, if we •

consider interactions of a z mode, ei a z and z, 0 mode, ei(az+O) at

leading order, then we could generate new interactions such as those

indicated by A and B which include z - z, 0 and z - 0 interactions. •

............................ .....
El elaz e - i  z  ei(az+O) 3- (azO)5( e2iaz_.4_> e2azi(e2i(az+O)/2e-2i(az+O)

.2 ._0 :2/ 5- 0.
B -. e e

2(z+) eO io e-i(2az+O).

........... ........................ .0
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IAII stable steady

. unstable steady

stable periodic

unstable periodic z 7 n ?r

quasiperiodic

intermittency I

Q2

0-1-2

0-2 -'

*------------ -- -- -- -- -- -- -- -- ------ '

Rc R

Figure 20. Bifurcation Diagram for Axisymmetric Case: Non-

linear Stage (3 modes)
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IJAII stable steady

. unstable steady

stable periodic 0
unstable periodic ,I 7? ?

quasiperiodic

homoclinic orbit H.O. S

tS

H.O.

Q2

0-1-2

0- O-

Rc1  Rc2  R

Figure 34. Bifurcation Diagram for Nonaxisymmetric Case: Non-

linear Stage (3 modes)
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ABSTRACT

Temporal and spatial stability calculations of thin circular shear

layers, such as would occur in the near-lip region of a large-Reynolds

number incompressible jet have been performed analytically and numeri-

cally. The linear growth rate in this case decreases in magnitude with

both the azimuthal wave number and the ratio of the momentum thickness

to the radius of the jet. The long-wave case is also investigated in

some detail. Nonaxisymmetric secondary instability through parametric

resonance is investigated. The analysis consists of an expansion and a

multiple-scaling technique in terms of the amplitude of the primary

disturbance. A solvability condition gives the amplitude-evolution

equation for the secondary instability. The total growth rate of the

secondary instability has two contributions: a linear theory part

contribution that, in this case, is always positive and the effect of

the parametric resonance. The contribution from the parametric

resonance shows the opposite trends of the linear growth rate. A

craik-like mechanism is also discussed.
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CHAPTER VII

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

The hydrodynamic instability of thin circular shear

layers of a large-Reynolds number jet of an incompressible

fluid have been investigated analytically and numerically.

The mean flow, to leading order, turns out to be the

Blasius shear-layer profile connecting a quiesent external

region and a uniform flow in the jet core. The curvature

effects for the thin circular shear-layer mean flow are

O(R-I/2), where R is the Reynolds number based on the jet

radius and the core velocity, and could be neglected in

the present analysis. The solution was obtained through a

numerical integration started in the external region.

As a necessary prerequisite for the secondary-

instability analysis which forms the core of this

investigation, both temporal and spatial linear inviscid

stability calculations have been performed allowing for

nonaxisymmetric perturbations. The linearized partial

differential equations governing small perturbations on

the mean flow were reduced to a second-order ordinary

differential equation for the perturbation pressure using,

in the usual fashion, the normal-mode assumption. The

solution for the perturbation pressure reduces to the

modified Bessel function of the first and second kinds in

the core region and the external region, respectively. The

external-region solution was used to start the numerical

integration of the perturbation-pressure equation across
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the shear layer and the process was iterated until the

numerical solution matched the jet-core solution. This

determined the eigenvalue.

For the temporal case both the Blasius shear-layer

and a hyperbolic-tangent velocity profile were used in the

calculations. The modified Bessel functions involved in

the boundary conditions were evaluated using IMSL

subroutines and special subroutines written to handle the

case of large azimuthal wave numbers (in combination with

large arguments). The dominating instability waves, i.e.,

the ones with the highest growth rates, have wave lengths

of the order of the thickness of thr shear layer. Both the

range of unstable wave numbers and the maximum growth rate

are slightly less for the more realistic Blasius

shear-layer profile than for the hyperbolic-tangent

velocity distribution. For both profiles, the phase

velocity is relatively independent of the azimuthal wave

number except for small streamwise wave numbers where the

difference is substantial, and both the maximum growth

rate and the range of unstable streamwise wave numbers are

reduced by increasing the azimuthal wave number. Tnis

behavior is enhanced by increasing the importance of the

curvature effects. It also was found that, for

axisymmetric disturbances, the phase velocity is rather

sensitive to curvature effects but the growth rate is not

and that the opposite is true for nonaxisymmetric

disturbances.



361

For the spatial case, only the Blasius shear-layer

profile was used in the stability calculations. Special

subroutines were written to evaluate the modified Bessel

functions for complex arguments. The results are in

general agreement with the calculations of Michalke

(1971), who used the hyperbolic-tangent mean-velocity

profile and obtained results for the axisymmetric and

helical modes. However, the maximum growth rate and the

range of unstable frequencies of the axisymmetric mode are

somewhat smaller and larger, respectively, than his

hyperbolic-tangent results, which led to a good agreement

between the results presented here and the experimentally

obtained values for the phase velocity and growth rate of

Drubka (1981). Furthermore, the phase velocity is

strongly dependent on the azimuthal wave number except for

large frequencies. The growth rate is relatively

independent of the azimuthal wave number for moderate

values of that parameter, but as it becomes large both the

growth rate and the range of unstable frequencies is

drastically reduced. Also, as the azimuthal wave number

becomes large the instability waves become increasingly

nondispersive, with only a decreasing small-frequency

region being dispersive. These effects are amplified with

increasing curvature effects.

The linear stability calculations have shown that the

azimuthal-wave-number and curvature effects are most

strongly felt for small values of the streamwise wave
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number or frequency, i.e., when the wave length of the

disturbance is large compared to the shear-layer

thickness. It was, therefore, of some interest to

investigate the case when the wave length is of the order

of the radius of the shear layer in some detail. This was

carried out for the temporal case only. Two velocity

profiles were used in the analysis, namely a broken-line

profile with a linear velocity distribution and the

continuous hyperbolic-tangent profile. Solutions were

constructed in terms of an expansion in powers the ratio

of the shear-layer thickness and the jet radius, which is

a small parameter in the case under consideration. The

lowest-order dispersion relation for both profiles turns

out to be the one for the circular vorticity layer studied

by Batchelor & Gill (1963). The next-order problem

incorporates the effect of the velocity distributions. It

was demonstrated that these inner solutions match onto

outer expansions as the streamwise wave number (scaled

with the jet radius) tends to infinity. In the outer

expansions, the details of the velocity distribution

enters to zeroth order and the curvature effects are a

first-order correction. For the hyperbolic-tangent

profile case, where the outer expansion is semi-numerical,

it was also demonstrated that both expansions agree with

the fully numerical solution in their respective regions

of validity.

Nonaxisymmetric secondary instability for the
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circular shear layer through parametric resonance has been

analyzed. Essentially following Kelly (1967), the theory

assumes that the fundamental disturbance, originating from

the linear-instability process, has reached a finite

amplitude equilibrium through nonlinear effects before the

secondary secondary instability occurs. The secondary

instability can then be analysed through using linearized

equations with periodic coefficients, whose periodicity in

space and time is set by the equilibrated fundamental

disturbance. Because the coefficients are periodic,

several resonance phenomena can occur; the most important

one being the principal parametric resonance involving a

subharmonic with twice the wave length of the fundamental.

These resonances were analysed by using an expansion and

multiple-scaling technique in terms of an characteristic

amplitude of the equilibrated fundamental disturbance; the

latter is assumed to be small but finite. Since the slow

time and spatial coordinate involve the amplitude of the

fundamental to the first power, the secondary instability

process is a faster process than the self-equilibrium

process that (presumably) involves the square of that

amplitude.

Both temporal and spatial calculations have been

carried out. It was found that the most important case,

i.e, the one with the strongest contribution to the total

growth rate (both temporal and spatial) from the

resonance, is the one involving an axisymmetric
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fundamental disturbance and two subharmonic modes with

opposite, but equal in magnitude, azimuthal wave numbers.

For this case, the secondary growth rate increases with

both increasing azimuthal wave number and the curvature

effects. The linear contribution to the total growth rate

shows the opposite effect, however. When the fundamental

is nonaxisymmetric, the secondary growth rate decreases

with increasing azimuthal wave number and curvature

effects.

A Craik-like (1971) triad interaction involving an

axisymmetric fundamental and two subharmonic waves with

opposite azimuthal wave numbers have also been analyzed.

The theory is only an approximate one since the growth

rates in this inviscidly unstable flow situation are not

necessarily small enough for a strict application of the

aforementioned theory. It is felt, however, that even

with its limitations the analysis presented here can shed

some light upon the transition process in circular shear

layers and jets. In particular, it was found that once

the subharmonic disturbances have reached a sufficient

amplitude so that back-interaction to the fundamental

becomes important, an explosive growth will occur witin a

finite time. This phenomenon was found to be relatively

insensitive to the initial conditions. Furthermore, with

identical initial conditions, the rapid growth was found

to occur earlier for larger azimuthal wave numbers and

curvature effects.
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As for future research, one of the more important
problems still to be resolved is the finite-amplitude

equilibration process (or since the mean flow is actually

spatially evolving and not a parallell flow, the

'near-equilibrium' process). At present, it is not clear

how a theory for this would proceed but in all likelyhood

it would have to be a fully numerical spatial computation.

Second, there is a great need for further experimental

work concerning the role of disturbances with higher

azimuthal wave numbers in both the early and later stages

of the transition process. The receptivity problem for

the near-lip region to pressure feedback from the vortex

pairing process is also a topic for future research.

i

i

i
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NUMERICAL EXPERIMENTS'ON CALCULATING ATTRACTOR DIMENSION

The present section documents the optimization and

error calibration of a program used to compute attractcr

dimension based on the Grassberger-Procaccia (1983)

algorithm. Dimension is generally considered to be the

most basic property of an attractor. It is also the most

reliably calculated quantity, as compared to other tools

of dynamical systems analysis applied to experimental

data. Generally speaking, the dimension of an attractor

is indicative of the number of degrees of freedom which

play a role in the dynamics of a system. Historically,

the interest in dimension calculation came from fractal

research ("How long is the cost of Britanny?",

Mandelbrot, 1975). More recently, however, the link

between fractals and the dynamics of low-dimensional

chaotic systems has generated strong incentive to

calculate the dimension of attractors in phase space.

Farmer et al. (1983) reviewed the various existing

measures of attractor dimension, and concluded at the

time that computations of fractal dimension were not

feasible for attractor dimensions significantly greater

than three.

The calculation of attractor dimension started with

so-called "box-counting" algorithms. These algorithms
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involved the covering of an object with cubes of side E,

and counting the number of cubes necessary to cover the

object. One would then expect a power law of the type
-D

N(c) = a.E in the limit c -> O, where "a" is a

proportionality constant and D is the fractal dimension

of the object. This concept proved useful to calculate

analytically the dimension of self-similar fractals such

as Koch's triadic curve, or the one-scale cantor set.

However, box-counting algorithms are impractical on a

computer, even for low-dimensional calculations.

Grassberger and Procaccia (1983) introduced the

"correlation dimension", based on the scaling of a

correlation sum over the attractor. The general idea

underlying this scaling law is schematically illustrated

in Figure 135. For any object topologically equivalent

to a line, the number of neighbours contained within a

ball of radius R is proportional to the radius. For an

object equivalent to a surface uniformly covered with

2points, the count N(R) becomes proportional to R , etc.

Thus, for "classical" objects, the power of R corresponds

to our intuitive notion of dimension, based on euclidian

geometry. In the general case, though, N(R) is

proportional to R D , where D may not be an integer

(lower graph of Figure 135). In this case the dimension

is said to be fractal. It should be pointed out that
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only for self-similar fractals should one expect the

scaling exponent to be identical on all sites of the 0

attractor. In the general case (Hasley et al., 1986), an

attractor may be described by a whole distribution of

scaling laws over the attractor. In practice, however,

one attempts to find a range of radii where one scaling

law applies.

The correlation sum is defined as the count of all

pairs of neighbours on the attractor, that are within a

distance R from each other. The formal expression for

the correlation sum is:

N
S(R) = lir 2 Z H(R - iui-ujl) [45]

N->- N i=l
j=1

where H designates the Heaviside step function, and

ui-ujl represents the distance between two points u i and

uj in phase space. The phase diagram (orbits ui) is

constructed according to the method of delays (see

Chapter V). In principal, one calculates the correlation

sum S(R) for a variety of radii scanning all scales on

the attractor. To extract the scaling exponents

represented in Figure 135, one displays S versus R on a

doubly logarithmic scale, and seeks a linear range, the

slope of which is the correlation dimension. Since the

actual dimension of the attractor is not known a priori,
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and since the calculated dimension is always bounded by

* the dimension of the embedding space, the slope is

plotted as a function of increasing embedding dimension,

until convergence is attained.

* Because the calculations were performed on a

laboratory computer, the following simplifications were

used in the numerical implementation of equation [45] .

* First, the sum was not performed over the entire

attractor, but over a fixed number of reference points.

The reference points were chosen randomly, and their

* number was generally chosen to be about one percent of

the total number of points on the attractor for real

data, and 0.1 % for the test cases described below.

* Secondly, the norm operator in equation [44] was replaced

by the norm one (i.e. sum of coordinate absolute values),

in order to avoid any multiplications. It is easy to

verify that the scaling arguments of Figure 135 are not

altered by replacing the ball by an M-dimensional cube.

Thirdly, the correlation sums were calculated for all

embedding dimensions and all radii simultaneously. The

calculation naturally started for the larger radii so

that candidate neighbours can be gradually eliminated

from the sorting process. Similarly, by starting with the

largest embedding dimension, if a point is not within an
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M-dimensional cube of size R, then it is not contained

within any lower-dimensional projection of the cube.

Finally, the calculation can be accelerated

significantly by integerizing the data prior to any

calculation. The advantage of this procedure is that not

only is floating point calculation avoided, but in

addition any sorting operation is replaced by indirect

addressing. The present author's confidence in the

validity of this last approximation has been strengthened

by our recent awareness of Powell's (1986) results, for

which random data integerized on eight bits yielded

accurate dimension estimates up to D = 60.

Due to these various simplifications, an error

calibration of the program was performed in order to

empirically establish confidence bounds. Numerous tests

were made, involving added sine waves with

"incommensurate" frequencies, as well as chaotic

attractors with known fractal dimension. Figure 136

shows the variation of the correlation sum with radius

and embedding dimension for a one-frequency system, based

on 10,000 data points. The slope of Figure 136 converges

to 1.03. Figure 137 considers a four-frequency system

with 100,000 data points and 100 reference points on the

attractor. Possibly because of the poor representation of

the attractor, one notices the double power law emanating
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from the plot. The determination of the range in which

the slope should be considered represents a possible

source of arbitrariness for real data. The saturation at

the large scales and the presence of a characteristic

"knee" in Figure 137 are quite typical of such plots. For

scales smaller than the knee location, the error is

generally random (truncation, digitization), and the

local slope equals the embedding dimension. Thus, the

dimension associated with the largest scales of motion is

the first plateau encountered when plctting the slope

starting from the largest radii. The calculated

dimension for this test signal made of four

incommensurate frequencies is D = 4.2.

Figure 138 represents an error calibration for the

calculation of attractor dimension using the program

described above. Up to nine "incommensurate" frequencies

were generated. The number of samples varied from 10,000

to 100,000, depending on the dimension, and the number of

reference points on the attractor varied from 9 to 100.

Two chaotic attractors were considered. For the Henon

map (dimension 1.26), the result was D = 1.20. For the

Lorenz attractor (dimension 2.06), the calculated

dimension was 2.03 using true X, Y, and Z coordinates,

and 2.01 usinq the method of delays. The error between

measured dimension and expected dimension was found to be
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smaller than 0.5 up to attractor dimensions of five. For

more than five incommensurate frequencies, the error was

found to be quite large (e.g. D = 11.3 for the

nine-frequency system). It was noticed that the error

was consistently positive with quasi-periodic systems,

and negative with fractals. It is not clear whether

there is any significance to this observation. The main

conclusion of Figure 138 is that the dimension estimates

using the current program appear to be accurate within

0.5 for dimensions smaller than five.

It is interesting to notice that the "representation

error" mentioned by Guckenheimer (1986) leads to error

estimates which fit quite well the data of Figure 138. It

is ,,ut clear why these estimates appear to predict the

expected error, since Guckenheimer's argument concerned

the resolution of small scales on an attractor, and not

the attractor dimension. According to this calculation,

however, the expected error would be:

1

= D.N D [46]

A 10 % error was obtained for the dimension calculation

of a five-frequency system using 100,000 points. By

multiplying the number of points by five, the theoretical

improvement according to equation (46] was predicted to

yield a 7.2 % error. The actual error from a 500,000 data
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point calculation was 7.6 %. Similarly, one run with

3,200,000 data points was predicted to yield a five

percent error ; the resulting calculation (nine days of

running time on the Masscomp computer) was accurate

within four percent of the expected dimension. Clearly,

the amount of data needed to improve the accuracy of

dimension estimates increases exponentially. This

additional deterrent precludes any attempt to efficiently

calculate pointwise dimensions above five with any

reasonable accuracy.

Figure 139 illustrates the use of the dimension

program on real data (see Chapter V) acquired in the jet

shear layer at X/D = 0.35 and Re = 70,000. The

calculations were done with 100,000 data points and 1000

reference points on the attractor. The top graph

(correlation sum versus radius) shows the presence of a

"knee" below which the slope continues to increase with

embedding dimension. The range of scaling is more clearly

illustrated by the region of constant slope

d(Log(S))/d(Log(R)) in the bottom graph. The result of

this calculation (see Figure 53) yielded a dimension

equal to 1.1 for the large scale motions of the

attractor.

It is worthwhile mentioning that new measures

characterizing the geometry of attractors at the onset of
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chaos have made their recent appearance (see Hasley et

al., 1986). The concept that an attractor can be

statistically characterized by a single number is overly

simplistic. Despite its widespread calculation, the

existence of a single scaling exponent over the attractor

is the exception more than the rule.
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